Purkinje cell

浦肯野细胞
  • 文章类型: Journal Article
    我们旨在使用小鼠血脑屏障(BBB)穿透腺相关病毒(AAV)-PHP.B产生脊髓小脑共济失调3型(SCA3)的小鼠模型。四至五周大的C57BL/6小鼠接受了高剂量(2.0×1011vg/小鼠)或低剂量(5.0×1010vg/小鼠)AAV-PHP的注射。B编码SCA3致病基因,该基因包含在普遍存在的鸡β-肌动蛋白杂种(CBh)启动子控制下的异常长的89个CAG重复序列[ATXN3(Q89)]。对照小鼠接受高剂量的AAV-PHP。B编码具有非致病性CAG重复的ATXN3[ATXN3(Q15)]或单独的磷酸盐缓冲盐水(PBS)。超过一半的小鼠注射高剂量的AAV-PHP。编码ATXN3的B(Q89)在打针后4周内逝世亡。在12周的观察期间,其他组中没有小鼠死亡。小鼠注射低剂量的AAV-PHP。编码ATXN3(Q89)的B表现出从4周开始的进行性运动不协调,并且在AAV注射后12周时进行足迹分析的跨步较短。免疫组织化学显示,注射低剂量AAV-PHP的小鼠的浦肯野细胞中分子层变薄并形成核内含物。B编码ATXN3(Q89)。此外,ATXN3(Q89)表达将小脑核中大投射神经元的数量显著减少至表达ATXN3(Q15)的小鼠中观察到的数量的三分之一。这种基于AAV的方法优于常规方法,因为只需注射AAV即可创建所需数量的模型小鼠。并且可以通过改变注射的AAV的量来调节负责基因的表达水平。此外,该方法可用于在非人灵长类动物中产生SCA3模型。
    We aimed to produce a mouse model of spinocerebellar ataxia type 3 (SCA3) using the mouse blood-brain barrier (BBB)-penetrating adeno-associated virus (AAV)-PHP.B. Four-to-five-week-old C57BL/6 mice received injections of high-dose (2.0 × 1011 vg/mouse) or low-dose (5.0 × 1010 vg/mouse) AAV-PHP.B encoding a SCA3 causative gene containing abnormally long 89 CAG repeats [ATXN3(Q89)] under the control of the ubiquitous chicken β-actin hybrid (CBh) promoter. Control mice received high doses of AAV-PHP.B encoding ATXN3 with non-pathogenic 15 CAG repeats [ATXN3(Q15)] or phosphate-buffered saline (PBS) alone. More than half of the mice injected with high doses of AAV-PHP.B encoding ATXN3(Q89) died within 4 weeks after the injection. No mice in other groups died during the 12-week observation period. Mice injected with low doses of AAV-PHP.B encoding ATXN3(Q89) exhibited progressive motor uncoordination starting 4 weeks and a shorter stride in footprint analysis performed at 12 weeks post-AAV injection. Immunohistochemistry showed thinning of the molecular layer and the formation of nuclear inclusions in Purkinje cells from mice injected with low doses of AAV-PHP.B encoding ATXN3(Q89). Moreover, ATXN3(Q89) expression significantly reduced the number of large projection neurons in the cerebellar nuclei to one third of that observed in mice expressing ATXN3(Q15). This AAV-based approach is superior to conventional methods in that the required number of model mice can be created simply by injecting AAV, and the expression levels of the responsible gene can be adjusted by changing the amount of AAV injected. Moreover, this method may be applied to produce SCA3 models in non-human primates.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    红藻氨酸(KA)型谷氨酸受体(KAR)通过其致离子和代谢作用与各种神经精神和神经系统疾病有关。然而,与AMPA和NMDA型受体功能相比,KAR生物学的许多方面仍未完全了解。我们的研究表明,KAR在小脑组织攀爬纤维(CF)-浦肯野细胞(PC)突触和突触可塑性中的重要作用,独立于它们的离子通道或代谢功能。GluK4KAR亚基的氨基末端结构域(ATD)与C1ql1结合,由CFs提供,并与Bai3相关,Bai3是在PC树突中表达的粘附型G蛋白偶联受体。缺乏GluK4的小鼠没有表现出KAR介导的反应,降低C1ql1和Bai3水平,更少的CF-PC突触,伴随着受损的长期抑郁和动眼学习。值得注意的是,GluK4的ATD的引入显著改善了所有这些表型。这些发现表明,KAR充当突触支架,通过在小脑中形成KAR-C1ql1-Bai3复合体来协调突触。
    Kainate (KA)-type glutamate receptors (KARs) are implicated in various neuropsychiatric and neurological disorders through their ionotropic and metabotropic actions. However, compared to AMPA- and NMDA-type receptor functions, many aspects of KAR biology remain incompletely understood. Our study demonstrates an important role of KARs in organizing climbing fiber (CF)-Purkinje cell (PC) synapses and synaptic plasticity in the cerebellum, independently of their ion channel or metabotropic functions. The amino-terminal domain (ATD) of the GluK4 KAR subunit binds to C1ql1, provided by CFs, and associates with Bai3, an adhesion-type G protein-coupled receptor expressed in PC dendrites. Mice lacking GluK4 exhibit no KAR-mediated responses, reduced C1ql1 and Bai3 levels, and fewer CF-PC synapses, along with impaired long-term depression and oculomotor learning. Remarkably, introduction of the ATD of GluK4 significantly improves all these phenotypes. These findings demonstrate that KARs act as synaptic scaffolds, orchestrating synapses by forming a KAR-C1ql1-Bai3 complex in the cerebellum.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    小脑在认知和社会功能中起着重要作用。儿童小脑损伤会增加自闭症谱系障碍的风险。小脑炎症诱导小鼠社交回避。催产素调节社会关系,脑内催产素受体的表达方式与社会行为有关。然而,小脑中催产素受体的表达模式仍存在争议。这里,我们报告说,小脑中催产素受体的表达模式在敲入转基因系之间高度可变。我们使用Oxtr-Cre敲入小鼠结合荧光报告线,发现Bergmann胶质细胞中的催产素受体表达比Purkinje细胞中的差异更大。我们发现,炎症引起的物理损伤会诱导Bergmann胶质细胞中催产素受体的选择性上调。我们的发现表明小脑中催产素受体表达的高度变异性,并表明在病理条件下催产素受体可以影响神经加工。比如炎症。
    The cerebellum plays an important role in cognitive and social functioning. Childhood damage in the cerebellum increases the risk of autism spectrum disorder. Cerebellar inflammation induces social avoidance in mice. Oxytocin regulates social relationship and expression pattern of the oxytocin receptor in the brain is related to social behaviors. However, the expression patterns of the oxytocin receptor in the cerebellum remain controversial. Here, we report that the expression patterns of the oxytocin receptor in the cerebellum are highly variable among knock-in transgenic lines. We used Oxtr-Cre knock-in mice combined with a fluorescent reporter line and found that oxytocin receptor expression in Bergmann glia was more variable than that in Purkinje cells. We found that physical damage with inflammation induced the selective upregulation of the oxytocin receptor in Bergmann glia. Our findings indicate high variability in oxytocin receptor expression in the cerebellum and suggest that the oxytocin receptor can affect neural processing in pathological conditions, such as inflammation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    已知小脑控制保持身体姿势的等距肌肉收缩的适当平衡。当前小脑皮质输出的光遗传学操作,然而,专注于弹道身体运动,检查运动开始或扰动。这里,通过光遗传学刺激小脑浦肯野细胞,小脑皮层的输出,我们评估身体姿势的维持。通过对身体运动的顺序分析,我们将光遗传学刺激的作用分解为直接诱导的运动,然后进行代偿反射以恢复身体姿势。我们确定了一个位于前椎骨内侧的模块,通过多种肌肉张力调节,参与身体的姿势反重力维持。此外,我们报告了在小叶IV/V/VI上的前后和中外侧功能分离。总之,我们的研究结果为更好地理解小脑皮层的模块化功能组织及其在姿势抗重力维持中的作用开辟了新的途径。
    The cerebellum is known to control the proper balance of isometric muscular contractions that maintain body posture. Current optogenetic manipulations of the cerebellar cortex output, however, have focused on ballistic body movements, examining movement initiation or perturbations. Here, by optogenetic stimulations of cerebellar Purkinje cells, which are the output of the cerebellar cortex, we evaluate body posture maintenance. By sequential analysis of body movement, we dissect the effect of optogenetic stimulation into a directly induced movement that is then followed by a compensatory reflex to regain body posture. We identify a module in the medial part of the anterior vermis which, through multiple muscle tone regulation, is involved in postural anti-gravity maintenance of the body. Moreover, we report an antero-posterior and medio-lateral functional segregation over the vermal lobules IV/V/VI. Taken together our results open new avenues for better understanding of the modular functional organization of the cerebellar cortex and its role in postural anti-gravity maintenance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    脊髓小脑共济失调34(SCA34)是一种常染色体显性疾病,由脂肪酸延伸酶的点突变引起,超长链脂肪酸4(ELOVL4)的延伸,这对于合成超长链饱和脂肪酸(VLC-SFA)和超长链多不饱和脂肪酸(VLC-PUFA)(28-34碳长)是必需的。SCA34被认为是一种神经退行性疾病。然而,导致人类SCA34的W246GELOVL4突变敲入的新型SCA34大鼠模型(SCA34-KI大鼠)显示早期运动损伤和异常突触传递和可塑性,而没有明显的神经变性.ELOVL4在发育中的大脑的神经区域表达,与细胞周期调节有关,和ELOVL4突变导致神经囊虫病导致发育性大脑畸形,提示由于ELOVL4突变导致的异常神经元生成可能有助于SCA34。为了测试W246GELOVL4是否改变了小脑中的神经元生成或存活,我们比较了浦肯野细胞的数量,单极刷细胞,分子层中间神经元,野生型小脑中的颗粒和置换的颗粒细胞,杂合子,和四个月龄的纯合SCA34-KI大鼠,当运动障碍已经存在时。一个不偏不倚的人,基于Cellpose2.0和ImageJ的半自动方法用于定量小脑切片中已知神经元特异性标记的神经元群体。到四个月龄时,神经元种群和皮质结构不受W246GELOVL4突变的影响,突触和运动障碍已经存在的时候,提示SCA34病理起源于VLC-SFA缺乏导致的突触功能障碍,而不是异常的神经元产生或神经变性。
    Spinocerebellar ataxia 34 (SCA34) is an autosomal dominant disease that arises from point mutations in the fatty acid elongase, Elongation of Very Long Chain Fatty Acids 4 (ELOVL4), which is essential for the synthesis of Very Long Chain-Saturated Fatty Acids (VLC-SFA) and Very Long Chain-Polyunsaturated Fatty Acids (VLC-PUFA) (28-34 carbons long). SCA34 is considered a neurodegenerative disease. However, a novel rat model of SCA34 (SCA34-KI rat) with knock-in of the W246G ELOVL4 mutation that causes human SCA34 shows early motor impairment and aberrant synaptic transmission and plasticity without overt neurodegeneration. ELOVL4 is expressed in neurogenic regions of the developing brain, is implicated in cell cycle regulation, and ELOVL4 mutations that cause neuroichthyosis lead to developmental brain malformation, suggesting that aberrant neuron generation due to ELOVL4 mutations might contribute to SCA34. To test whether W246G ELOVL4 altered neuronal generation or survival in the cerebellum, we compared the numbers of Purkinje cells, unipolar brush cells, molecular layer interneurons, granule and displaced granule cells in the cerebellum of wildtype, heterozygous, and homozygous SCA34-KI rats at four months of age, when motor impairment is already present. An unbiased, semi-automated method based on Cellpose 2.0 and ImageJ was used to quantify neuronal populations in cerebellar sections immunolabeled for known neuron-specific markers. Neuronal populations and cortical structure were unaffected by the W246G ELOVL4 mutation by four months of age, a time when synaptic and motor dysfunction are already present, suggesting that SCA34 pathology originates from synaptic dysfunction due to VLC-SFA deficiency, rather than aberrant neuronal production or neurodegeneration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Cre-lox系统是神经科学研究中将基因缺失靶向特定细胞群体的不可或缺的工具。在这里,我们评估了几种转基因Cre系的实用性,随着病毒的方法,用于靶向小鼠小脑浦肯野细胞。使用荧光报道系(Ai14)的组合来指示Cre介导的重组和floxedDystroglycan系(Dag1flox),我们表明,报道分子表达并不总是与蛋白质丢失精确对齐。常用的Pcp2Cre系在P7-P14的Purkinje细胞中表现出Cre重组的逐渐镶嵌模式,而Dag1蛋白的丢失直到P30才完全。Ptf1aCre驱动前体细胞的重组,从而在胚胎小脑中产生GABA能神经元,包括浦肯野细胞和分子层中间神经元。然而,由于它在前体中的瞬时表达,Ptf1aCre导致这些神经元中Dag1蛋白的随机丢失。NestinCre,通常被描述为中枢神经系统的“泛神经元”Cre线,在浦肯野细胞中不驱动Cre介导的重组。我们确定了Calb1Cre系,它可以在胚胎Purkinje细胞中驱动有效和完全的重组,导致Dag1蛋白在突触发生之前丢失。在P0时AAV8介导的Cre递送导致在出生后第二周期间Purkinje细胞的逐渐转导,Dag1蛋白的损失直到P35才达到可感知的水平。这些结果表征了在不同发育阶段靶向小脑浦肯野细胞中条件性缺失的几种工具,并说明了验证重组后蛋白质丢失的重要性。重要性陈述用于将基因缺失靶向定义的细胞群体的Cre系的发展导致了神经科学中的重要发现。和任何工具一样,有固有的局限性,必须仔细考虑。在这里,我们描述了几种Cre系,可用于在各个发育阶段靶向小脑Purkinje细胞。我们使用Cre依赖性荧光报道系和突触支架分子Dystroglycan的条件性缺失的组合作为示例,以突出显示荧光报道分子的存在与蛋白质丢失之间的潜在脱节。
    The Cre-lox system is an indispensable tool in neuroscience research for targeting gene deletions to specific cellular populations. Here we assess the utility of several transgenic Cre lines, along with a viral approach, for targeting cerebellar Purkinje cells (PCs) in mice. Using a combination of a fluorescent reporter line (Ai14) to indicate Cre-mediated recombination and a floxed Dystroglycan line (Dag1flox ), we show that reporter expression does not always align precisely with loss of protein. The commonly used Pcp2Cre line exhibits a gradual mosaic pattern of Cre recombination in PCs from Postnatal Day 7 (P7) to P14, while loss of Dag1 protein is not complete until P30. Ptf1aCre drives recombination in precursor cells that give rise to GABAergic neurons in the embryonic cerebellum, including PCs and molecular layer interneurons. However, due to its transient expression in precursors, Ptf1aCre results in stochastic loss of Dag1 protein in these neurons. NestinCre , which is often described as a \"pan-neuronal\" Cre line for the central nervous system, does not drive Cre-mediated recombination in PCs. We identify a Calb1Cre line that drives efficient and complete recombination in embryonic PCs, resulting in loss of Dag1 protein before the period of synaptogenesis. AAV8-mediated delivery of Cre at P0 results in gradual transduction of PCs during the second postnatal week, with loss of Dag1 protein not reaching appreciable levels until P35. These results characterize several tools for targeting conditional deletions in cerebellar PCs at different developmental stages and illustrate the importance of validating the loss of protein following recombination.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    尽管外观统一,小脑皮层在结构上高度异质,遗传学和生理学。浦肯野细胞(PC),小脑皮层的主要和唯一的输出神经元,可以分为差异表达分子标记并显示独特生理特征的多个群体。这些特征包括动作电位率,还有它们对突触和内在可塑性的倾向。然而,与PC的不同生理特性相关的精确分子和遗传因素仍然难以捉摸。在这篇文章中,我们提供了调节PC活性和可塑性的细胞机制的详细概述。我们进一步进行了通路分析,以强调特定PC群体的分子特征如何影响其生理和可塑性机制。
    Despite its uniform appearance, the cerebellar cortex is highly heterogeneous in terms of structure, genetics and physiology. Purkinje cells (PCs), the principal and sole output neurons of the cerebellar cortex, can be categorized into multiple populations that differentially express molecular markers and display distinctive physiological features. Such features include action potential rate, but also their propensity for synaptic and intrinsic plasticity. However, the precise molecular and genetic factors that correlate with the differential physiological properties of PCs remain elusive. In this article, we provide a detailed overview of the cellular mechanisms that regulate PC activity and plasticity. We further perform a pathway analysis to highlight how molecular characteristics of specific PC populations may influence their physiology and plasticity mechanisms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    分子层中间神经元(MLI)约占小脑皮质中抑制性中间神经元的80%,对小脑加工至关重要。MLI被认为主要抑制浦肯野细胞(PC)并抑制突触到PC上的可塑性。MLIs也抑制,并电耦合到,其他MLI,但是这些连接的功能意义尚不清楚。这里,我们发现了两个最近发现的MLI亚型,MLI1和MLI2具有高度专业化的连接性,使它们能够充当不同的功能角色。MLI1主要抑制PC,彼此电耦合,在体内毫秒时间尺度上与其他MLI1同步发射,并同步暂停PC点火。MLI2没有电耦合,主要抑制MLI1和抑制PC,非常适合控制小脑依赖的行为和学习。电耦合的MLI1的同步发射和MLI2提供的去抑制需要对小脑处理进行重大的重新评估。
    Molecular layer interneurons (MLIs) account for approximately 80% of the inhibitory interneurons in the cerebellar cortex and are vital to cerebellar processing. MLIs are thought to primarily inhibit Purkinje cells (PCs) and suppress the plasticity of synapses onto PCs. MLIs also inhibit, and are electrically coupled to, other MLIs, but the functional significance of these connections is not known. Here, we find that two recently recognized MLI subtypes, MLI1 and MLI2, have a highly specialized connectivity that allows them to serve distinct functional roles. MLI1s primarily inhibit PCs, are electrically coupled to each other, fire synchronously with other MLI1s on the millisecond timescale in vivo, and synchronously pause PC firing. MLI2s are not electrically coupled, primarily inhibit MLI1s and disinhibit PCs, and are well suited to gating cerebellar-dependent behavior and learning. The synchronous firing of electrically coupled MLI1s and disinhibition provided by MLI2s require a major re-evaluation of cerebellar processing.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    病毒载体基因治疗在治疗中枢神经系统(CNS)疾病方面具有巨大的前景。尽管腺相关病毒载体(AAV)已经取得了成功,它们的小包装容量限制了它们治疗许多CNS疾病的根本原因的效用。腺病毒载体(Ad)在CNS基因治疗方法中具有巨大的潜力。目前,最常见的载体利用C组Ad5血清型衣壳蛋白,依靠柯萨奇病毒-腺病毒受体(CAR)感染细胞。然而,这些Ad5载体不能转导在许多CNS疾病中功能失调的许多神经元细胞类型。人CD46(hCD46)受体在整个人CNS中广泛表达,并且是许多Ad血清型的主要附着受体。因此,为了克服目前Ad载体治疗中枢神经系统疾病的局限性,我们创建了利用hCD46受体的嵌合第一代Ad载体。使用“人源化”hCD46小鼠模型,我们证明了这些Ad载体转导小脑细胞类型,包括浦肯野细胞,对Ad5转导是难治的。由于Ad载体转导特性依赖于其衣壳蛋白,这些嵌合的第一代Ad载体为小脑疾病和多种神经系统疾病的高容量辅助依赖性腺病毒(HdAd)基因治疗方法开辟了新的途径.
    Viral vector gene therapy has immense promise for treating central nervous system (CNS) disorders. Although adeno-associated virus vectors (AAVs) have had success, their small packaging capacity limits their utility to treat the root cause of many CNS disorders. Adenoviral vectors (Ad) have tremendous potential for CNS gene therapy approaches. Currently, the most common vectors utilize the Group C Ad5 serotype capsid proteins, which rely on the Coxsackievirus-Adenovirus receptor (CAR) to infect cells. However, these Ad5 vectors are unable to transduce many neuronal cell types that are dysfunctional in many CNS disorders. The human CD46 (hCD46) receptor is widely expressed throughout the human CNS and is the primary attachment receptor for many Ad serotypes. Therefore, to overcome the current limitations of Ad vectors to treat CNS disorders, we created chimeric first generation Ad vectors that utilize the hCD46 receptor. Using a \"humanized\" hCD46 mouse model, we demonstrate these Ad vectors transduce cerebellar cell types, including Purkinje cells, that are refractory to Ad5 transduction. Since Ad vector transduction properties are dependent on their capsid proteins, these chimeric first generation Ad vectors open new avenues for high-capacity helper-dependent adenovirus (HdAd) gene therapy approaches for cerebellar disorders and multiple neurological disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    小脑参与更高阶的认知功能,并且容易发生与年龄相关的萎缩。然而,有限的证据直接研究了小脑在认知衰老中的作用。为了询问小脑结构与记忆之间的关系的潜在底物,在这里,我们的目标是浦肯野细胞(PC)。小脑的唯一输出神经元,PC丧失和/或变性是各种行为异常的基础。使用正常认知老化的大鼠模型,我们对小脑的部分进行了PC特异性蛋白的免疫染色,Calbindin-D28k.尽管形态定量显示PC总数与年龄或认知状态的关系没有显着差异,与老年动物相比,年轻小脑的区域细胞数量与记忆表现的相关性更强。对整个小脑中PC特异性蛋白水平的平行生化分析还显示,与年轻动物和老年大鼠相比,具有空间记忆障碍的老年大鼠的钙结合蛋白-D28k和浦肯野细胞蛋白2(pcp-2)水平选择性较低记忆完整。这些结果表明,认知老化与小脑脆弱性有关,可能反映小脑-内侧颞叶网络的破坏。
    The cerebellum is involved in higher order cognitive function and is susceptible to age-related atrophy. However, limited evidence has directly examined the cerebellum\'s role in cognitive aging. To interrogate potential substrates of the relationship between cerebellar structure and memory in aging, here we target the Purkinje cells (PCs). The sole output neurons of the cerebellum, PC loss and/or degeneration underlie a variety of behavioral abnormalities. Using a rat model of normal cognitive aging, we immunostained sections through the cerebellum for the PC-specific protein, calbindin-D28k. Although morphometric quantification revealed no significant difference in total PC number as a function of age or cognitive status, regional cell number was a more robust correlate of memory performance in the young cerebellum than in aged animals. Parallel biochemical analysis of PC-specific protein levels in whole cerebellum additionally revealed that calbindin-D28k and Purkinje cell protein-2 (pcp-2) levels were lower selectively in aged rats with spatial memory impairment compared to both young animals and aged rats with intact memory. These results suggest that cognitive aging is associated with cerebellum vulnerability, potentially reflecting disruption of the cerebellum-medial temporal lobe network.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号