Polyploidization

多倍化
  • 文章类型: Journal Article
    目标:全基因组复制(WGD,多倍体化)已被确定为遗传和表型新颖性的驱动因素,对谱系的进化有着普遍的影响。虽然多倍体普遍存在,尤其是在植物中,多倍体的长期建立极为罕见。基因组加倍通常会导致细胞大小和代谢费用增加,这可能足以在其二倍体祖先茁壮成长的环境中调节多倍体的建立。
    方法:我们开发了光合个体的机理模拟模型,以测试大小和代谢效率的变化是否允许自身多倍体与,甚至入侵,祖先二倍体种群。模型的核心是代谢效率,这决定了从大小依赖性光合生产中获得的能量如何分配给基础代谢,而不是体细胞和生殖生长。我们预计,如果新多倍体具有与二倍体相同或更高的代谢效率,或者适应其生活史以抵消代谢效率低下,它们将成功建立。
    结果:在多倍体和二倍体之间的广泛代谢效率差异中观察到多倍体入侵。多倍体在二倍体种群中建立,即使它们的代谢效率较低,这是通过反复形成促进的。在此模型中,营养竞争是人口动态的主要驱动因素。多年性不会定性地影响四倍体倾向于建立的相对代谢效率。
    结论:大小依赖性代谢和能量分配之间的反馈产生了具有不同倍性的植物之间的大小和年龄差异。我们证明,即使代谢效率的微小变化也足以建立多倍体。
    OBJECTIVE: Whole-genome duplication (WGD, polyploidization) has been identified as a driver of genetic and phenotypic novelty, having pervasive consequences for the evolution of lineages. While polyploids are widespread, especially among plants, the long-term establishment of polyploids is exceedingly rare. Genome doubling commonly results in increased cell sizes and metabolic expenses, which may be sufficient to modulate polyploid establishment in environments where their diploid ancestors thrive.
    METHODS: We developed a mechanistic simulation model of photosynthetic individuals to test whether changes in size and metabolic efficiency allow autopolyploids to coexist with, or even invade, ancestral diploid populations. Central to the model is metabolic efficiency, which determines how energy obtained from size-dependent photosynthetic production is allocated to basal metabolism as opposed to somatic and reproductive growth. We expected neopolyploids to establish successfully if they have equal or higher metabolic efficiency as diploids or to adapt their life history to offset metabolic inefficiency.
    RESULTS: Polyploid invasion was observed across a wide range of metabolic efficiency differences between polyploids and diploids. Polyploids became established in diploid populations even when they had a lower metabolic efficiency, which was facilitated by recurrent formation. Competition for nutrients is a major driver of population dynamics in this model. Perenniality did not qualitatively affect the relative metabolic efficiency from which tetraploids tended to establish.
    CONCLUSIONS: Feedback between size-dependent metabolism and energy allocation generated size and age differences between plants with different ploidies. We demonstrated that even small changes in metabolic efficiency are sufficient for the establishment of polyploids.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    与任一亲本相比,植物中的杂种活力在后代中赋予了更好的农艺学上重要的性状。最近,Wang等人。报道了番茄中克隆配子生产的有丝分裂而不是减数分裂(MiMe)系统,显示出通过在四倍体杂种中堆叠来自四个祖父母的基因组来利用同源多倍体进行性杂种优势的潜力,从杂交MiMe杂种发展而来。
    Hybrid vigor in plants confers better agronomically significant traits in offspring compared with either parent. Recently, Wang et al. reported a mitosis instead of meiosis (MiMe) system in tomato for clonal gamete production, showing the potential to exploit autopolyploid progressive heterosis by stacking genomes from four grandparents in tetraploid hybrids, developed from crossing MiMe hybrids.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:三倍体香蕉几乎是无菌的。然而,我们成功地从我们的保护库中的两个可食用的三倍体香蕉个体(基因型:ABB)中收获了种子,其中还种植了各种野生二倍体香蕉。由此产生的稀有后代存活到幼苗阶段。DNA含量分析表明它们是四倍体。由于香蕉含有母系遗传的质体和父系遗传的线粒体,我们对这些幼苗的质体和有丝分裂基因组进行了测序和组装,以追踪它们的杂交历史。
    结果:提取了两种细胞器基因组支架的编码序列,对齐,并串联起来构建系统发育树。我们的结果表明,这些四倍体幼苗来自可食用的三倍体香蕉和野生二倍体Musabalbisiana(BB)个体之间的杂交。我们建议通过无配子产生雌性三倍体配子可以使三倍体母体香蕉产生有活力的种子。
    结论:我们的研究为扩大香蕉育种计划的遗传重组和增加遗传多样性提供了一条切实可行的途径。需要进一步的细胞研究,以了解导致香蕉繁殖中杂交胚形成的融合和发育过程,多倍体化,和进化。
    BACKGROUND: Triploid bananas are almost sterile. However, we succeeded in harvesting seeds from two edible triploid banana individuals (Genotype: ABB) in our conservation repository where various wild diploid bananas were also grown. The resulting rare offspring survived to seedling stages. DNA content analyses reveal that they are tetraploid. Since bananas contain maternally inherited plastids and paternally inherited mitochondria, we sequenced and assembled plastomes and mitogenomes of these seedlings to trace their hybridization history.
    RESULTS: The coding sequences of both organellar genomic scaffolds were extracted, aligned, and concatenated for constructing phylogenetic trees. Our results suggest that these tetraploid seedlings be derived from hybridization between edible triploid bananas and wild diploid Musa balbisiana (BB) individuals. We propose that generating female triploid gametes via apomeiosis may allow the triploid maternal bananas to produce viable seeds.
    CONCLUSIONS: Our study suggests a practical avenue towards expanding genetic recombination and increasing genetic diversity of banana breeding programs. Further cellular studies are needed to understand the fusion and developmental processes that lead to formation of hybrid embryos in banana reproduction, polyploidization, and evolution.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    了解心肌细胞多倍体化的机制对于推进刺激心肌再生的策略至关重要。尽管内复制一直被认为是多倍体人心肌细胞的主要来源,最近的动物研究表明心肌细胞融合的潜力。此外,以前尚未研究多倍体化对人心肌细胞基因组-转录组库的影响.我们应用了单核全基因组测序,单核RNA测序,以及从11个健康心脏中分离出的多体ATAC+基因表达(来自相同的细胞核)技术。利用发育过程中发生的合子后非遗传体细胞突变作为内源性条形码,重建多倍体心肌细胞的谱系关系。在来自多个健康供体心脏的482个心肌细胞中,75.7%可以被分选成由一个或多个体细胞单核苷酸变体(SNV)标记的几个发育进化枝。至少约10%的四倍体心肌细胞含有来自不同进化枝的细胞,表明线性不同的细胞融合,而60%的高倍性心肌细胞包含来自不同进化枝的融合细胞。结合snRNA-seq和snATAC-seq揭示了与二倍体心肌细胞不同的多倍体心肌细胞的转录组和染色质景观。并显示一些具有转录特征的高倍性心肌细胞,表明心肌细胞与内皮细胞和成纤维细胞之间融合。这些观察结果为人类心肌细胞的细胞和核融合提供了第一个证据,提高了细胞融合可能有助于在人心脏中发育或维持多倍体心肌细胞的可能性。
    Understanding the mechanisms of polyploidization in cardiomyocytes is crucial for advancing strategies to stimulate myocardial regeneration. Although endoreplication has long been considered the primary source of polyploid human cardiomyocytes, recent animal work suggests the potential for cardiomyocyte fusion. Moreover, the effects of polyploidization on the genomic-transcriptomic repertoire of human cardiomyocytes have not been studied previously. We applied single-nuclei whole genome sequencing, single nuclei RNA sequencing, and multiome ATAC + gene expression (from the same nuclei) techniques to nuclei isolated from 11 healthy hearts. Utilizing post-zygotic non-inherited somatic mutations occurring during development as \"endogenous barcodes,\" to reconstruct lineage relationships of polyploid cardiomyocytes. Of 482 cardiomyocytes from multiple healthy donor hearts 75.7% can be sorted into several developmental clades marked by one or more somatic single-nucleotide variants (SNVs). At least ~10% of tetraploid cardiomyocytes contain cells from distinct clades, indicating fusion of lineally distinct cells, whereas 60% of higher-ploidy cardiomyocytes contain fused cells from distinct clades. Combined snRNA-seq and snATAC-seq revealed transcriptome and chromatin landscapes of polyploid cardiomyocytes distinct from diploid cardiomyocytes, and show some higher-ploidy cardiomyocytes with transcriptional signatures suggesting fusion between cardiomyocytes and endothelial and fibroblast cells. These observations provide the first evidence for cell and nuclear fusion of human cardiomyocytes, raising the possibility that cell fusion may contribute to developing or maintaining polyploid cardiomyocytes in the human heart.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    植物的多倍体化通常会导致细胞大小和晶粒大小增加,这可能会受到增加的基因组剂量和转录丰度的影响。合成的硬粒小麦(AABB)-海草(VV)两倍体(AABBVV)的晶粒尺寸显着增加,尤其是粒长比四倍体和二倍体亲本。为了研究多倍化如何在转录水平上影响谷物发育,我们使用硬粒的未成熟种子进行转录组分析,H.Villosa,和两倍体。剂量效应基因更多的是来自紫花苜蓿基因组V的差异表达基因(DEGs)。剂量效应基因超过了谷物发育相关基因。有趣的是,春化基因TaVRN1是硬粒T.硬粒H.中的正剂量效应基因之一。villosa和T.turgidum-Ae。tauschii两倍体。TaVRN1同源物的表达水平与籽粒大小和重量呈显著正相关。TaVRN1-B1或TaVRN1-D1突变显示荧光延迟,细胞大小减小,晶粒尺寸,和谷物产量。这些数据表明,剂量效应基因可能是通过调节谷物发育而增加谷物尺寸的重要解释之一。剂量效应基因的鉴定和功能验证可能有助于发现有价值的提高小麦产量的基因。
    Polyploidization in plants often leads to increased cell size and grain size, which may be affected by the increased genome dosage and transcription abundance. The synthesized Triticum durum (AABB)-Haynaldia villosa (VV) amphiploid (AABBVV) has significantly increased grain size, especially grain length, than the tetraploid and diploid parents. To investigate how polyploidization affects grain development at the transcriptional level, we perform transcriptome analysis using the immature seeds of T. durum, H. villosa, and the amphiploid. The dosage effect genes are contributed more by differentially expressed genes from genome V of H. villosa. The dosage effect genes overrepresent grain development-related genes. Interestingly, the vernalization gene TaVRN1 is among the positive dosage effect genes in the T. durum‒H. villosa and T. turgidum‒Ae. tauschii amphiploids. The expression levels of TaVRN1 homologs are positively correlated with the grain size and weight. The TaVRN1-B1 or TaVRN1-D1 mutation shows delayed florescence, decreased cell size, grain size, and grain yield. These data indicate that dosage effect genes could be one of the important explanations for increased grain size by regulating grain development. The identification and functional validation of dosage effect genes may facilitate the finding of valuable genes for improving wheat yield.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    多倍体化和去多倍体化是二倍体生物正常发育和组织稳态的关键过程。最近的研究表明,多非整倍体癌细胞(PACCs)利用这种倍性变异作为对抗抗癌治疗和肿瘤再增殖的生存策略。PACCs中的计划外多倍体化和染色体不稳定性增强恶性和治疗抗性。然而,它们不能进行有丝分裂会在大多数PACCs中导致灾难性的细胞死亡。适应性倍体逆转机制,如多极有丝分裂,中心体聚类,减数分裂样分裂,和无丝分裂,抵消这种致命的结果和驱动癌症复发。这项工作的目的是专注于细胞毒性治疗诱导的PACCs,强调生理和病理环境中倍性动力学的最新发现。具体来说,通过强调“多倍化”在肿瘤进展中的作用,目的是确定新的治疗靶点或范例,以对抗与异常倍性相关的疾病。
    Polyploidization and depolyploidization are critical processes in the normal development and tissue homeostasis of diploid organisms. Recent investigations have revealed that polyaneuploid cancer cells (PACCs) exploit this ploidy variation as a survival strategy against anticancer treatment and for the repopulation of tumors. Unscheduled polyploidization and chromosomal instability in PACCs enhance malignancy and treatment resistance. However, their inability to undergo mitosis causes catastrophic cellular death in most PACCs. Adaptive ploid reversal mechanisms, such as multipolar mitosis, centrosome clustering, meiosis-like division, and amitosis, counteract this lethal outcome and drive cancer relapse. The purpose of this work is to focus on PACCs induced by cytotoxic therapy, highlighting the latest discoveries in ploidy dynamics in physiological and pathological contexts. Specifically, by emphasizing the role of \"poly-depolyploidization\" in tumor progression, the aim is to identify novel therapeutic targets or paradigms for combating diseases associated with aberrant ploidies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Phyllanthaceae家族包括各种各样的植物,具有药用,可食用,和观赏价值,在全世界广泛种植。多倍体物种通常发生在余香科。由于相当复杂的基因组和进化史,它们的形态形成过程一直缺乏研究。在这项研究中,我们在Phyllanthaceae家族中生成了两个八倍体物种(余甘子和sauropusspatulifolius)的染色体尺度单倍型解析基因组。结合我们先前报道的同一家族的一种四倍体(Sauropusandrogynus)和一种二倍体物种(Phyllanthuscochinensis),我们探索了它们的物种形成历史。三个多倍体物种都被鉴定为具有亚基因组A/B的异源多倍体。他们来自不同物种的两个不同的亚基因组组中的每一个都被发现独立地共享一个共同的二倍体祖先(祖先-AA和祖先-BB)。通过不同的进化路线,包括各种分叉发散的场景,异源多倍化(杂种多倍化),和自多倍化,它们最终进化成了目前的四倍体雌雄虫,和八倍体S.spatulifolius和P.emblica,分别。我们进一步讨论了等位基因拷贝数的变化以及两个八倍体中的潜在影响。此外,我们还研究了具有医学价值的代谢物的波动,并确定了其在八倍体物种中生物合成过程中的关键因素。我们的研究重建了这些毛竹科物种的进化史,强调多倍体化和杂交在物种形成过程中的关键作用。这两个八倍体物种的高质量基因组为进一步的进化和功能基因组学研究提供了宝贵的基因组资源。
    The Phyllanthaceae family comprises a diverse range of plants with medicinal, edible, and ornamental value, extensively cultivated worldwide. Polyploid species commonly occur in Phyllanthaceae. Due to the rather complex genomes and evolutionary histories, their speciation process has been still lacking in research. In this study, we generated chromosome-scale haplotype-resolved genomes of two octoploid species (Phyllanthus emblica and Sauropus spatulifolius) in Phyllanthaceae family. Combined with our previously reported one tetraploid (Sauropus androgynus) and one diploid species (Phyllanthus cochinchinensis) from the same family, we explored their speciation history. The three polyploid species were all identified as allopolyploids with subgenome A/B. Each of their two distinct subgenome groups from various species was uncovered to independently share a common diploid ancestor (Ancestor-AA and Ancestor-BB). Via different evolutionary routes, comprising various scenarios of bifurcating divergence, allopolyploidization (hybrid polyploidization), and autopolyploidization, they finally evolved to the current tetraploid S. androgynus, and octoploid S. spatulifolius and P. emblica, respectively. We further discuss the variations in copy number of alleles and the potential impacts within the two octoploids. In addition, we also investigated the fluctuation of metabolites with medical values and identified the key factor in its biosynthesis process in octoploids species. Our study reconstructed the evolutionary history of these Phyllanthaceae species, highlighting the critical roles of polyploidization and hybridization in their speciation processes. The high-quality genomes of the two octoploid species provide valuable genomic resources for further research of evolution and functional genomics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    致死毒素(LT)是炭疽芽孢杆菌的关键毒力因子,炭疽病的病原体.在炭疽患者中观察到的一个常见症状是血小板减少症,在注射LT的小鼠中也观察到了这一点。我们先前的研究表明,LT通过抑制巨核细胞生成诱导血小板减少症,但是这种现象背后的确切分子机制仍然未知。在这项研究中,我们利用12-O-十四烷酰基佛波醇-13-乙酸盐(TPA)诱导的人红白血病(HEL)细胞巨核细胞分化来鉴定参与LT诱导的巨核细胞抑制的基因.通过cDNA微阵列分析,我们确定了腊肠同源物1(DACH1)是在TPA处理后上调但在TPA和LT存在下下调的基因,从炭疽芽孢杆菌的培养上清液中纯化。探讨DACH1在巨核细胞分化中的作用,我们采用短发夹RNA技术在HEL细胞中敲低DACH1表达并评估其对分化的影响。我们的数据显示,DACH1表达的敲低抑制了巨核细胞的分化,特别是在多倍体化方面。我们证明了炭疽芽孢杆菌LT诱导HEL细胞多倍体化抑制的一种机制是通过MEK1/2的裂解。这种切割导致ERK信号通路的下调,从而抑制DACH1基因表达并抑制多倍体化。此外,我们发现已知的巨核细胞生成相关基因,比如FOSB,ZFP36L1,RUNX1,FLI1,AHR,和GFI1B基因可能受DACH1正调控。此外,我们观察到血小板减少症患者在CD34巨核细胞体外分化过程中DACH1的上调和DACH1的下调。总之,我们的研究结果揭示了LT诱导的血小板减少症背后的一个分子机制,并揭示了DACH1在巨核细胞生成中的一个以前未知的作用.
    Lethal toxin (LT) is the critical virulence factor of Bacillus anthracis, the causative agent of anthrax. One common symptom observed in patients with anthrax is thrombocytopenia, which has also been observed in mice injected with LT. Our previous study demonstrated that LT induces thrombocytopenia by suppressing megakaryopoiesis, but the precise molecular mechanisms behind this phenomenon remain unknown. In this study, we utilized 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced megakaryocytic differentiation in human erythroleukemia (HEL) cells to identify genes involved in LT-induced megakaryocytic suppression. Through cDNA microarray analysis, we identified Dachshund homolog 1 (DACH1) as a gene that was upregulated upon TPA treatment but downregulated in the presence of TPA and LT, purified from the culture supernatants of B. anthracis. To investigate the function of DACH1 in megakaryocytic differentiation, we employed short hairpin RNA technology to knock down DACH1 expression in HEL cells and assessed its effect on differentiation. Our data revealed that the knockdown of DACH1 expression suppressed megakaryocytic differentiation, particularly in polyploidization. We demonstrated that one mechanism by which B. anthracis LT induces suppression of polyploidization in HEL cells is through the cleavage of MEK1/2. This cleavage results in the downregulation of the ERK signaling pathway, thereby suppressing DACH1 gene expression and inhibiting polyploidization. Additionally, we found that known megakaryopoiesis-related genes, such as FOSB, ZFP36L1, RUNX1, FLI1, AHR, and GFI1B genes may be positively regulated by DACH1. Furthermore, we observed an upregulation of DACH1 during in vitro differentiation of CD34-megakaryocytes and downregulation of DACH1 in patients with thrombocytopenia. In summary, our findings shed light on one of the molecular mechanisms behind LT-induced thrombocytopenia and unveil a previously unknown role for DACH1 in megakaryopoiesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    多倍体,是动植物王国物种形成和进化过程的重要催化剂,已经被认可很长时间了。然而,导致多倍体形成的确切分子机制,尤其是在脊椎动物中,没有完全理解。我们的研究旨在使用斑马鱼模型阐明这一现象。我们使用CRISPR/Cas9技术成功实现了细胞周期蛋白N端结构域含1(cntd1)的有效敲除。这导致减数分裂交叉的形成受损,导致减数分裂中期细胞周期停滞,并引发睾丸精母细胞凋亡。尽管有这些缺陷,突变体(cntd1-/-)雄性仍然能够产生有限数量的具有正常倍性和功能的精子。有趣的是,在突变的雌性中,是倍性的,而不是鸡蛋的生产能力被改变了。这导致了单倍体的产生,非整倍体,和未减少的配子。这种改变使我们能够从cntd1-/-和cntd1-/-/-雌性中成功获得三倍体和四倍体斑马鱼,分别。此外,与野生型(WT)或四倍体斑马鱼杂交时,四倍体杂合斑马鱼产生还原二倍体配子,并产生全三倍体或全四倍体后代,分别。总的来说,我们的研究结果为支持减数分裂交叉缺陷在多倍化过程中的关键作用提供了直接证据.这在鱼中产生未减少的卵中尤其明显,潜在的,其他脊椎动物物种。
    Polyploidy, a significant catalyst for speciation and evolutionary processes in both plant and animal kingdoms, has been recognized for a long time. However, the exact molecular mechanism that leads to polyploid formation, especially in vertebrates, is not fully understood. Our study aimed to elucidate this phenomenon using the zebrafish model. We successfully achieved an effective knockout of the cyclin N-terminal domain containing 1 (cntd1) using CRISPR/Cas9 technology. This resulted in impaired formation of meiotic crossovers, leading to cell-cycle arrest during meiotic metaphase and triggering apoptosis of spermatocytes in the testes. Despite these defects, the mutant (cntd1-/-) males were still able to produce a limited amount of sperm with normal ploidy and function. Interestingly, in the mutant females, it was the ploidy not the capacity of egg production that was altered. This resulted in the production of haploid, aneuploid, and unreduced gametes. This alteration enabled us to successfully obtain triploid and tetraploid zebrafish from cntd1-/- and cntd1-/-/- females, respectively. Furthermore, the tetraploid-heterozygous zebrafish produced reduced-diploid gametes and yielded all-triploid or all-tetraploid offspring when crossed with wild-type (WT) or tetraploid zebrafish, respectively. Collectively, our findings provide direct evidence supporting the crucial role of meiotic crossover defects in the process of polyploidization. This is particularly evident in the generation of unreduced eggs in fish and, potentially, other vertebrate species.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:马尾虫,唯一已知的三倍体孤雌生殖蛇,是揭示脊椎动物多倍体出现机制的令人信服的物种。
    方法:在本研究中,我们应用PacBio同工型测序技术产生了第一个全长的Braminus转录组,旨在提高对该物种分子特征的理解。
    结果:产生了来自I.braminus的总共51,849个非冗余全长转录物组件(N50长度为2980bp),并使用各种基因功能数据库进行了完整注释。我们的分析提供了初步证据,支持最近在I.braminus中发生的基因组重复事件。系统发育分析表明,马蹄铁亚基因组的分歧发生在约11.5~15百万年前(Mya)。作为这项研究的一部分而产生的全长转录本资源将促进将来的转录组分析和基因组进化研究。
    BACKGROUND: Indotyphlops braminus, the only known triploid parthenogenetic snake, is a compelling species for revealing the mechanism of polyploid emergence in vertebrates.
    METHODS: In this study, we applied PacBio isoform sequencing technology to generate the first full-length transcriptome of I. braminus, aiming to improve the understanding of the molecular characteristics of this species.
    RESULTS: A total of 51,849 nonredundant full-length transcript assemblies (with an N50 length of 2980 bp) from I. braminus were generated and fully annotated using various gene function databases. Our analysis provides preliminary evidence supporting a recent genome duplication event in I. braminus. Phylogenetic analysis indicated that the divergence of I. braminus subgenomes occurred approximately 11.5 ~ 15 million years ago (Mya). The full-length transcript resource generated as part of this research will facilitate transcriptome analysis and genomic evolution studies in the future.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号