{Reference Type}: Journal Article {Title}: Phylogenomics identifies parents of naturally occurring tetraploid bananas. {Author}: Lin YE;Chiu HL;Wu CS;Chaw SM; {Journal}: Bot Stud {Volume}: 65 {Issue}: 1 {Year}: 2024 Jul 12 暂无{DOI}: 10.1186/s40529-024-00429-9 {Abstract}: BACKGROUND: Triploid bananas are almost sterile. However, we succeeded in harvesting seeds from two edible triploid banana individuals (Genotype: ABB) in our conservation repository where various wild diploid bananas were also grown. The resulting rare offspring survived to seedling stages. DNA content analyses reveal that they are tetraploid. Since bananas contain maternally inherited plastids and paternally inherited mitochondria, we sequenced and assembled plastomes and mitogenomes of these seedlings to trace their hybridization history.
RESULTS: The coding sequences of both organellar genomic scaffolds were extracted, aligned, and concatenated for constructing phylogenetic trees. Our results suggest that these tetraploid seedlings be derived from hybridization between edible triploid bananas and wild diploid Musa balbisiana (BB) individuals. We propose that generating female triploid gametes via apomeiosis may allow the triploid maternal bananas to produce viable seeds.
CONCLUSIONS: Our study suggests a practical avenue towards expanding genetic recombination and increasing genetic diversity of banana breeding programs. Further cellular studies are needed to understand the fusion and developmental processes that lead to formation of hybrid embryos in banana reproduction, polyploidization, and evolution.