Polycomb Repressive Complex 2

Polycomb 抑制复合体 2
  • 文章类型: Journal Article
    髓母细胞瘤的有效且毒性较小的疗法已被证明是高度难以捉摸的。在本期的癌细胞中,Yangetal.表明甲状腺激素治疗通过逆转EZH2介导的NeuroD1的转录抑制导致神经源性分化因子1(NeuroD1)的激活和髓母细胞瘤细胞的分化。
    Effective and less toxic therapies for medulloblastoma have proved to be highly elusive. In this issue of Cancer Cell, Yang et al. show that thyroid hormone treatment leads to the activation of neurogenic differentiation factor 1 (NeuroD1) and differentiation of medulloblastoma cells through reversing EZH2-mediated transcriptional repression of NeuroD1.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    DNA甲基转移酶DNMT3A(DNMT3A1)的同种型1特异性识别在组蛋白H2A赖氨酸-119(H2AK119ub1)上的核小体单双酰化以建立DNA甲基化。该过程的错误调节可能导致异常的DNA甲基化和发病机理。然而,DNMT3A1-核小体相互作用的分子基础仍然难以捉摸。在这里,我们报告了DNMT3A1的泛素依赖性募集(UDR)片段与H2AK119ub1修饰的核小体复合的低温EM结构。DNMT3A1UDR占据广泛的核小体表面,涉及H2A-H2B酸性贴片,由H2A和H3形成的表面凹槽,核小体DNA,和H2AK119ub1。DNMT3A1UDR与H2AK119ub1的交互以上下文相关的方式影响单元中DNMT3A1的功能。我们的结构和生化分析还揭示了DNMT3A1和JARID2之间的竞争,JARID2是多梳抑制复合物2(PRC2)的辅因子,对于核小体结合,表明不同表观遗传途径之间的相互作用。一起,这项研究报道了H2AK119ub1依赖性DNMT3A1-核小体缔合的分子基础,在DNMT3A1介导的DNA甲基化发育中具有重要意义。
    Isoform 1 of DNA methyltransferase DNMT3A (DNMT3A1) specifically recognizes nucleosome monoubiquitylated at histone H2A lysine-119 (H2AK119ub1) for establishment of DNA methylation. Mis-regulation of this process may cause aberrant DNA methylation and pathogenesis. However, the molecular basis underlying DNMT3A1-nucleosome interaction remains elusive. Here we report the cryo-EM structure of DNMT3A1\'s ubiquitin-dependent recruitment (UDR) fragment complexed with H2AK119ub1-modified nucleosome. DNMT3A1 UDR occupies an extensive nucleosome surface, involving the H2A-H2B acidic patch, a surface groove formed by H2A and H3, nucleosomal DNA, and H2AK119ub1. The DNMT3A1 UDR\'s interaction with H2AK119ub1 affects the functionality of DNMT3A1 in cells in a context-dependent manner. Our structural and biochemical analysis also reveals competition between DNMT3A1 and JARID2, a cofactor of polycomb repression complex 2 (PRC2), for nucleosome binding, suggesting the interplay between different epigenetic pathways. Together, this study reports a molecular basis for H2AK119ub1-dependent DNMT3A1-nucleosome association, with important implications in DNMT3A1-mediated DNA methylation in development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    DNA甲基化(DNAm)是哺乳动物组织衰老的最可靠的生物标志物之一。虽然DNAm的年龄依赖性全球损失已经得到了很好的表征,DNAm增益的特征较少。研究表明,随着年龄的增长而获得甲基化的CpG富含多梳抑制复合物2(PRC2)靶标。然而,缺乏对所有PRC2靶标的全基因组检查以及对这些关联的泛组织或组织特异性性质的确定.这里,我们表明,在所有检查的体细胞有丝分裂细胞中,胚胎干细胞(PRC2LMR)中与PRC2高度结合的低甲基化区域(LMR)随着年龄的增长而获得甲基化。我们估计,这种表观遗传变化代表了整个基因组中年龄依赖性DNAm增益的约90%。因此,我们提出了“PRC2-AgeIndex”,“定义为PRC2LMR中的平均DNAm,作为体细胞中细胞衰老的通用生物标志物,可以区分不同抗衰老干预措施的效果。
    DNA methylation (DNAm) is one of the most reliable biomarkers of aging across mammalian tissues. While the age-dependent global loss of DNAm has been well characterized, DNAm gain is less characterized. Studies have demonstrated that CpGs which gain methylation with age are enriched in Polycomb Repressive Complex 2 (PRC2) targets. However, whole-genome examination of all PRC2 targets as well as determination of the pan-tissue or tissue-specific nature of these associations is lacking. Here, we show that low-methylated regions (LMRs) which are highly bound by PRC2 in embryonic stem cells (PRC2 LMRs) gain methylation with age in all examined somatic mitotic cells. We estimated that this epigenetic change represents around 90% of the age-dependent DNAm gain genome-wide. Therefore, we propose the \"PRC2-AgeIndex,\" defined as the average DNAm in PRC2 LMRs, as a universal biomarker of cellular aging in somatic cells which can distinguish the effect of different anti-aging interventions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:基因表达的准确调节对于细胞的正常发育和功能至关重要。相关基因JARID2在OSCC中的预后意义和潜在致癌机制尚不清楚,但现有的研究表明两者之间有显著的关联。
    方法:采用免疫组化实验和RT-qPCR分析OSCC患者肿瘤标本中JARID2基因的表达与临床病理因素的关系。根据患者的临床病理资料,使用公共数据库进行生物信息学分析,以确定JARID2在OSCC中的功能.敲低OSCC细胞系的构建,并通过CCK-8,伤口愈合试验评估JARID2对OSCC细胞系生物学行为的影响,和Transwell分析。
    结果:免疫组化实验证实了JARID2与OSCC患者预后的相关性,而RT-qPCR实验证明其在组织和细胞中的表达水平。CKK-8实验,伤口愈合试验,和Transwell实验表明,击倒JARID2对增殖有负面影响,入侵,和OSCC细胞的迁移。生物信息学分析结果显示,JARID2在OSCC中的表达与患者基因共表达密切相关,基因功能富集,免疫浸润,和药物敏感性。
    结论:我们的研究表明JARID2是一种新型的OSCC预后生物标志物和潜在的治疗靶点。
    BACKGROUND: Accurate regulation of gene expression is crucial for normal development and function of cells. The prognostic significance and potential carcinogenic mechanisms of the related gene JARID2 in OSCC are not yet clear, but existing research has indicated a significant association between the two.
    METHODS: The relationship between the expression of the JARID2 gene in tumor samples of OSCC patients and clinical pathological factors was analyzed using immunohistochemistry experiments and RT-qPCR analysis. Based on the clinical pathological data of patients, bioinformatics analysis was conducted using public databases to determine the function of JARID2 in OSCC. Knockdown OSCC cell lines were constructed, and the impact of JARID2 on the biological behavior of OSCC cell lines was assessed through CCK-8, wound healing assay, and transwell analysis.
    RESULTS: Immunohistochemistry experiments confirmed the correlation between JARID2 and the prognosis of OSCC patients, while RT-qPCR experiments demonstrated its expression levels in tissue and cells. CKK-8 experiments, wound healing assays, and Transwell experiments indicated that knocking down JARID2 had a negative impact on the proliferation, invasion, and migration of OSCC cells. Bioinformatics analysis results showed that the expression of JARID2 in OSCC is closely associated with patient gene co-expression, gene function enrichment, immune infiltration, and drug sensitivity.
    CONCLUSIONS: Our study indicates that JARID2 is a novel prognostic biomarker and potential therapeutic target for OSCC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    多梳抑制复合物2(PRC2)调节皮质发育,然而,在成熟的大脑中,这种表观遗传修饰突变的后果尚不明确。重要的是,PRC2核心基因是单倍体不足的,并且是几种人类神经发育障碍的原因。为了解决PRC2在成熟皮质结构和功能中的作用,我们有条件地从发育中的小鼠背侧端脑中删除了PRC2基因Eed。成年纯合子显示出较小的前脑结构。单核转录组学显示,谷氨酸能神经元尤其受到影响,表现出失调的基因表达谱,伴随着神经元形态和连通性的畸变。值得注意的是,纯合小鼠在具有挑战性的认知任务中表现良好。相比之下,虽然杂合小鼠没有表现出明显的解剖或行为差异,它们表现出神经元基因失调和神经元形态改变,与纯合表型明显不同。总的来说,这些数据揭示了PRC2功能的改变如何塑造成熟的大脑,并揭示了PRC2在确定谷氨酸能神经元身份中的剂量特异性作用。
    The Polycomb Repressive Complex 2 (PRC2) regulates corticogenesis, yet the consequences of mutations to this epigenetic modifier in the mature brain are poorly defined. Importantly, PRC2 core genes are haploinsufficient and causative of several human neurodevelopmental disorders. To address the role of PRC2 in mature cortical structure and function, we conditionally deleted the PRC2 gene Eed from the developing mouse dorsal telencephalon. Adult homozygotes displayed smaller forebrain structures. Single-nucleus transcriptomics revealed that glutamatergic neurons were particularly affected, exhibiting dysregulated gene expression profiles, accompanied by aberrations in neuronal morphology and connectivity. Remarkably, homozygous mice performed well on challenging cognitive tasks. In contrast, while heterozygous mice did not exhibit clear anatomical or behavioral differences, they displayed dysregulation of neuronal genes and altered neuronal morphology that was strikingly different from homozygous phenotypes. Collectively, these data reveal how alterations to PRC2 function shape the mature brain and reveal a dose-specific role for PRC2 in determining glutamatergic neuron identity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    衰老与发育之间的机械联系在很大程度上尚未探索。通过分析22种小鼠细胞类型的年龄相关染色质和转录变化,与以前的小鼠和人类生物体成熟数据集一起分析,我们发现了两个过程共有的转录因子结合位点(TFBS)特征。早期候选顺式调控元件(cCREs),在成熟和衰老过程中逐渐失去可及性,富集了细胞类型标识TFBS。相反,在整个生命中获得可及性的cCRE具有较低的细胞身份TFBSs丰度,但激活蛋白1(AP-1)水平升高。我们暗示TF对这些富含AP-1TFBS的cCRE的再分配,与细胞身份TFs的轻度下调协同作用,驱动早期cCRE可及性丧失和改变发育和代谢基因表达。这种重塑可以通过升高AP-1或耗尽抑制性H3K27me3来触发。我们建议AP-1连接的染色质开放通过破坏细胞身份TFBS丰富的cCREs来驱动生物体成熟,从而重新编程转录组和细胞功能,一种通过持续开放染色质在衰老过程中劫持的机制。
    A mechanistic connection between aging and development is largely unexplored. Through profiling age-related chromatin and transcriptional changes across 22 murine cell types, analyzed alongside previous mouse and human organismal maturation datasets, we uncovered a transcription factor binding site (TFBS) signature common to both processes. Early-life candidate cis-regulatory elements (cCREs), progressively losing accessibility during maturation and aging, are enriched for cell-type identity TFBSs. Conversely, cCREs gaining accessibility throughout life have a lower abundance of cell identity TFBSs but elevated activator protein 1 (AP-1) levels. We implicate TF redistribution toward these AP-1 TFBS-rich cCREs, in synergy with mild downregulation of cell identity TFs, as driving early-life cCRE accessibility loss and altering developmental and metabolic gene expression. Such remodeling can be triggered by elevating AP-1 or depleting repressive H3K27me3. We propose that AP-1-linked chromatin opening drives organismal maturation by disrupting cell identity TFBS-rich cCREs, thereby reprogramming transcriptome and cell function, a mechanism hijacked in aging through ongoing chromatin opening.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    组蛋白翻译后修饰对于介导基因表达的持续改变至关重要。通过结合无偏蛋白质组学分析和全基因组方法,我们发现赖氨酸27在组蛋白H3(H3K27me1)的单甲基化在胁迫的持久效应中的作用。具体来说,对早期生活压力(ELS)或慢性社会失败压力(CSDS)敏感的小鼠在伏隔核(NAc)中显示出增加的H3K27me1富集,一个关键的大脑奖励区域。应激诱导的H3K27me1积累发生在控制神经元兴奋性的基因上,并由SUZ12的VEFS结构域介导,SUZ12是多梳抑制复合物2的核心亚基,控制H3K27甲基化模式。病毒VEFS表达改变了NAc的转录谱,导致社会,情感,和认知异常,NAcD1-中等棘突神经元的兴奋性和突触传递改变。一起,我们描述了H3K27me1在大脑中的新功能,并证明了其作为介导终身压力易感性的“染色质瘢痕”的作用。
    Histone post-translational modifications are critical for mediating persistent alterations in gene expression. By combining unbiased proteomics profiling and genome-wide approaches, we uncovered a role for mono-methylation of lysine 27 at histone H3 (H3K27me1) in the enduring effects of stress. Specifically, mice susceptible to early life stress (ELS) or chronic social defeat stress (CSDS) displayed increased H3K27me1 enrichment in the nucleus accumbens (NAc), a key brain-reward region. Stress-induced H3K27me1 accumulation occurred at genes that control neuronal excitability and was mediated by the VEFS domain of SUZ12, a core subunit of the polycomb repressive complex-2, which controls H3K27 methylation patterns. Viral VEFS expression changed the transcriptional profile of the NAc, led to social, emotional, and cognitive abnormalities, and altered excitability and synaptic transmission of NAc D1-medium spiny neurons. Together, we describe a novel function of H3K27me1 in the brain and demonstrate its role as a \"chromatin scar\" that mediates lifelong stress susceptibility.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    异常调节的表观遗传状态是癌症的标志,并且通常起因于表观遗传调节因子的遗传改变。这包括组蛋白的错义突变,which,连同相关的DNA,形成核小体核心颗粒。然而,大多数组蛋白突变的致癌机制尚不清楚.这里,我们证明了在组蛋白H3N末端尾部精氨酸处的癌症相关组蛋白突变破坏了抑制性染色质结构域,改变基因调控,分化失调。我们发现组蛋白H3R2C和R26C突变体降低转录抑制H3K27me3。虽然表达这些突变体的细胞中的H3K27me3耗竭仅在具有突变的组蛋白尾巴的一小部分上观察到,相同的突变体在染色质环境中反复破坏广泛的H3K27me3结构域,包括近发育调节的启动子。H3K27me3丢失导致分化途径的去抑制,尽管与PRC2底物的接近程度不同,但H3R2和H3R26突变体之间的作用一致,H3K27.功能上,表达H3R26C的间充质祖细胞和鼠胚胎干细胞衍生的畸胎瘤显示分化受损。总的来说,这些数据表明,与癌症相关的H3N-末端精氨酸突变降低PRC2活性并破坏染色质依赖性发育功能,癌症相关表型。
    Dysregulated epigenetic states are a hallmark of cancer and often arise from genetic alterations in epigenetic regulators. This includes missense mutations in histones, which, together with associated DNA, form nucleosome core particles. However, the oncogenic mechanisms of most histone mutations are unknown. Here, we demonstrate that cancer-associated histone mutations at arginines in the histone H3 N-terminal tail disrupt repressive chromatin domains, alter gene regulation, and dysregulate differentiation. We find that histone H3R2C and R26C mutants reduce transcriptionally repressive H3K27me3. While H3K27me3 depletion in cells expressing these mutants is exclusively observed on the minor fraction of histone tails harboring the mutations, the same mutants recurrently disrupt broad H3K27me3 domains in the chromatin context, including near developmentally regulated promoters. H3K27me3 loss leads to de-repression of differentiation pathways, with concordant effects between H3R2 and H3R26 mutants despite different proximity to the PRC2 substrate, H3K27. Functionally, H3R26C-expressing mesenchymal progenitor cells and murine embryonic stem cell-derived teratomas demonstrate impaired differentiation. Collectively, these data show that cancer-associated H3 N-terminal arginine mutations reduce PRC2 activity and disrupt chromatin-dependent developmental functions, a cancer-relevant phenotype.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    最近的研究揭示了胶质瘤中胶原蛋白信号的破坏,然而,监管领域在很大程度上仍未探索。这项研究探讨了多梳抑制复合物2(PRC2)介导的H3K27me3修饰的作用,神经胶质瘤的一个关键表观遗传因素。使用内部数据,我们鉴定了在胶质母细胞瘤(GBM)中下调的miRNA,其具有调节胶原VI家族基因的潜力。值得注意的是,miR-3189作为主要的PRC2靶标出现。在印度GBM患者以及其他神经胶质瘤队列中,其表达显着下调。机械见解,涉及荧光素酶测定,诱变,和蛋白质印迹分析,证实miR-3189-3p直接靶向胶原蛋白VI成员COL6A2。功能试验表明miR-3189-3p通过抑制细胞增殖抑制GBM恶性肿瘤,迁移,和上皮-间质转化(EMT)。相反,COL6A2在GBM患者中过度表达,对抗miR-3189,并促进恶性表型。基因集富集分析强调了COL6A2表达升高的GBM患者的EMT富集,具有预后意义。这项研究揭示了两种表观遗传调节因子H3K27me3和miR-3189之间的复杂相互作用,协同调节胶原蛋白VI基因;因此,影响GBM的恶性程度。靶向此H3K27me3|miR-3189-3p|COL6A2轴提供了针对GBM的潜在治疗途径。
    Recent studies have shed light on disrupted collagen signaling in Gliomas, yet the regulatory landscape remains largely unexplored. This study enquired into the role of polycomb repressive complex-2 (PRC2)-mediated H3K27me3 modification, a key epigenetic factor in glioma. Using in-house data, we identified miRNAs downregulated in glioblastoma (GBM) with the potential to regulate Collagen VI family genes. Notably, miR-3189 emerged as a prime PRC2 target. Its expression was significantly downregulated in Indian GBM patients as well as other glioma cohorts. Mechanistic insights, involving Luciferase assays, mutagenesis, and Western blot analysis, confirmed direct targeting of Collagen VI member COL6A2 by miR-3189-3p. Functional assays demonstrated that miR-3189-3p restrained GBM malignancy by inhibiting proliferation, migration, and epithelial-mesenchymal transition (EMT). Conversely, COL6A2 overexpressed in GBM patients, countered miR-3189, and promoted the malignant phenotype. Gene set enrichment analysis highlighted EMT enrichment in GBM patients with elevated COL6A2 expression, carrying prognostic implications. This study uncovers intricate interactions between two epigenetic regulators-H3K27me3 and miR-3189-working synergistically to modulate Collagen VI gene; thus, influencing the malignancy of GBM. Targeting this H3K27me3|miR-3189-3p|COL6A2 axis presents a potential therapeutic avenue against GBM.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    控制Polycomb抑制复合物2(PRC2)从头建立染色质介导的转录沉默的机制和时间尺度尚不清楚。这里,我们研究了拟南芥花球C(FLC)的PRC2沉默,已知涉及共转录RNA加工,组蛋白去甲基化活性,和PRC2功能,但到目前为止还没有机械上的联系。我们开发并测试了一个计算模型,该模型描述了由RNA结合蛋白FCA介导的近端聚腺苷酸化/终止,该模型诱导了组蛋白脱甲基酶FLD去除H3K4me1。H3K4me1去除反馈降低RNA聚合酶II(RNAPolII)的持续合成能力,从而增强提前终止,从而抑制生产性转录。该模型预测,这种转录偶联的抑制控制PRC2作用的转录拮抗水平。因此,这种压制的有效性决定了建立PRC2/H3K27me3沉默的时间表。我们通过实验验证了这些机械模型预测,揭示了共同转录加工在基因座上设定了生产性转录的水平,然后确定ON-OFF开关到PRC2静默的速率。
    The mechanisms and timescales controlling de novo establishment of chromatin-mediated transcriptional silencing by Polycomb repressive complex 2 (PRC2) are unclear. Here, we investigate PRC2 silencing at Arabidopsis FLOWERING LOCUS C (FLC), known to involve co-transcriptional RNA processing, histone demethylation activity, and PRC2 function, but so far not mechanistically connected. We develop and test a computational model describing proximal polyadenylation/termination mediated by the RNA-binding protein FCA that induces H3K4me1 removal by the histone demethylase FLD. H3K4me1 removal feeds back to reduce RNA polymerase II (RNA Pol II) processivity and thus enhance early termination, thereby repressing productive transcription. The model predicts that this transcription-coupled repression controls the level of transcriptional antagonism to PRC2 action. Thus, the effectiveness of this repression dictates the timescale for establishment of PRC2/H3K27me3 silencing. We experimentally validate these mechanistic model predictions, revealing that co-transcriptional processing sets the level of productive transcription at the locus, which then determines the rate of the ON-to-OFF switch to PRC2 silencing.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号