Nucleolus

核仁
  • 文章类型: Journal Article
    在出芽酵母中,核仁是隔离Cdc14的位点,Cdc14是有丝分裂退出所必需的磷酸酶。该隔离需要核仁蛋白Tof2、Net1和Fob1。尽管已知这些核仁蛋白是SUMO化的,SUMO化如何调节它们的活性仍然未知。这里,我们显示Tof2表现出细胞周期调节的核仁离域和周转。核小泛素样修饰剂(SUMO)蛋白酶Ulp2的耗尽不仅会导致Tof2多聚SUMO化,核仁离域,和降解,但也导致Cdc14核仁释放和活化。这个结果取决于聚SUMO化和下游酶的活性,包括SUMO靶向泛素连接酶和Cdc48/p97分离酶。我们进一步开发了一个系统,将SUMO机器连接到Tof2,并产生了SUMO缺陷的tof2突变体,结果表明,Tof2聚SUMO化对其核仁离域和降解是必要和充分的。一起,我们的工作揭示了一种多SUMO依赖性机制,该机制使Tof2从核仁离域以促进有丝分裂退出。
    In budding yeast, the nucleolus serves as the site to sequester Cdc14, a phosphatase essential for mitotic exit. Nucleolar proteins Tof2, Net1, and Fob1 are required for this sequestration. Although it is known that these nucleolar proteins are SUMOylated, how SUMOylation regulates their activity remains unknown. Here, we show that Tof2 exhibits cell-cycle-regulated nucleolar delocalization and turnover. Depletion of the nuclear small ubiquitin-like modifier (SUMO) protease Ulp2 not only causes Tof2 polySUMOylation, nucleolar delocalization, and degradation but also leads to Cdc14 nucleolar release and activation. This outcome depends on polySUMOylation and the activity of downstream enzymes, including SUMO-targeted ubiquitin ligase and Cdc48/p97 segregase. We further developed a system to tether SUMO machinery to Tof2 and generated a SUMO-deficient tof2 mutant, and the results indicate that Tof2 polySUMOylation is necessary and sufficient for its nucleolar delocalization and degradation. Together, our work reveals a polySUMO-dependent mechanism that delocalizes Tof2 from the nucleolus to facilitate mitotic exit.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    基因毒性剂对DNA的影响及其去除过程已得到彻底研究;然而,对DNA修复后恢复细胞活动的机制知之甚少,尽管恢复损伤诱导的转录阻断对细胞存活至关重要。除了阻碍转录,DNA损伤有可能破坏染色质结构域在细胞核内的精确定位,并改变核仁精心组织的结构。除了需要恢复RNA聚合酶1和2转录介导的转录,至关重要的是恢复核仁的结构,以促进最佳的核糖体生物发生,并确保有效和无错误的翻译。这里,我们研究了目前对DNA修复完成后如何恢复RNA聚合酶2的转录活性的理解,并探索了重组核仁以保护细胞功能正确进展的机制。鉴于缺乏关于这一重要功能的信息,本综述旨在激励研究人员更深入地探索这一特定主题,并就如何进一步研究这一复杂且几乎未探索的过程提供必要的建议。
    The effects of genotoxic agents on DNA and the processes involved in their removal have been thoroughly studied; however, very little is known about the mechanisms governing the reinstatement of cellular activities after DNA repair, despite restoration of the damage-induced block of transcription being essential for cell survival. In addition to impeding transcription, DNA lesions have the potential to disrupt the precise positioning of chromatin domains within the nucleus and alter the meticulously organized architecture of the nucleolus. Alongside the necessity of resuming transcription mediated by RNA polymerase 1 and 2 transcription, it is crucial to restore the structure of the nucleolus to facilitate optimal ribosome biogenesis and ensure efficient and error-free translation. Here, we examine the current understanding of how transcriptional activity from RNA polymerase 2 is reinstated following DNA repair completion and explore the mechanisms involved in reassembling the nucleolus to safeguard the correct progression of cellular functions. Given the lack of information on this vital function, this Review seeks to inspire researchers to explore deeper into this specific subject and offers essential suggestions on how to investigate this complex and nearly unexplored process further.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    无机多磷酸盐(polyP)是控制基本过程的普遍存在的聚合物。为了克服缺乏基因可处理的哺乳动物模型,我们开发了一种表达大肠杆菌多磷酸激酶1(EcPPK1)的诱导型哺乳动物细胞系。诱导EcPPK1表达促进polyP合成,能够验证polyP分析方法。几乎所有新合成的polyP都在细胞核内积累,主要在核仁。核仁内的通道polyP导致其标记物的重新分布,导致rRNA加工改变。超微结构分析揭示了与超浓缩核仁相关的电子致密polyP结构,这是由于控制这种无膜细胞器的液-液相分离(LLPS)现象加剧所致。polyP在核仁中的选择性积累可以解释为polyP通道向其生理功能发生的放大。的确,几种哺乳动物细胞系的定量分析证实内源性polyP在核仁内积累。
    Inorganic polyphosphate (polyP) is a ubiquitous polymer that controls fundamental processes. To overcome the absence of a genetically tractable mammalian model, we developed an inducible mammalian cell line expressing Escherichia coli polyphosphate kinase 1 (EcPPK1). Inducing EcPPK1 expression prompted polyP synthesis, enabling validation of polyP analytical methods. Virtually all newly synthesized polyP accumulates within the nucleus, mainly in the nucleolus. The channeled polyP within the nucleolus results in the redistribution of its markers, leading to altered rRNA processing. Ultrastructural analysis reveals electron-dense polyP structures associated with a hyper-condensed nucleolus resulting from an exacerbation of the liquid-liquid phase separation (LLPS) phenomena controlling this membraneless organelle. The selective accumulation of polyP in the nucleoli could be interpreted as an amplification of polyP channeling to where its physiological function takes place. Indeed, quantitative analysis of several mammalian cell lines confirms that endogenous polyP accumulates within the nucleolus.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    蛋白质和RNA结合成相分离组件的能力,如核仁和应力颗粒,是组织无膜细胞区室的基本原理。虽然生物分子缩合物的成分通常有据可查,它们在应力下形成的机制只有部分理解。这里,我们在酵母中显示,泛素样修饰剂Urm1的共价修饰促进多种蛋白质的相分离。我们发现,应激引起的细胞pH值下降会触发Urm1自缔合及其与靶蛋白和Urm1缀合酶Uba4的相互作用。应激敏感蛋白的Urmylation促进其沉积成应激颗粒和核缩合物。缺乏Urm1的酵母细胞表现出缩合缺陷,表现为降低的应力弹性。我们建议Urm1充当可逆的分子“粘合剂”,以在细胞应激下驱动功能关键蛋白的保护相分离。
    The ability of proteins and RNA to coalesce into phase-separated assemblies, such as the nucleolus and stress granules, is a basic principle in organizing membraneless cellular compartments. While the constituents of biomolecular condensates are generally well documented, the mechanisms underlying their formation under stress are only partially understood. Here, we show in yeast that covalent modification with the ubiquitin-like modifier Urm1 promotes the phase separation of a wide range of proteins. We find that the drop in cellular pH induced by stress triggers Urm1 self-association and its interaction with both target proteins and the Urm1-conjugating enzyme Uba4. Urmylation of stress-sensitive proteins promotes their deposition into stress granules and nuclear condensates. Yeast cells lacking Urm1 exhibit condensate defects that manifest in reduced stress resilience. We propose that Urm1 acts as a reversible molecular \"adhesive\" to drive protective phase separation of functionally critical proteins under cellular stress.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    人类起源识别复合物(ORC)不仅是DNA复制的起始所必需的,但也牵涉到不同的细胞功能,包括染色质组织,中心体生物学,和胞质分裂。ORC最小的亚单位,Orc6在真核生物中保守性差。我们实验室最近的研究表明,复制许可不需要人Orc6,但S期进展是必需的。Further,在T229的Orc6的ATR依赖性磷酸化与S期的DNA损伤反应有关。在这项研究中,我们证明了在有丝分裂期间发生T195处的CDK依赖性Orc6磷酸化。虽然在T195的磷酸化似乎不需要退出有丝分裂,表达Orc6的磷模拟T195E突变体的细胞阻碍S期进展。此外,Orc6的磷酸化形式与ORC的结合更强烈,和Orc6显示与G1以外的ORC的增强关联,支持Orc6可能阻止Orc1-5在G1以外的许可中的作用的观点。最后,Orc6和磷酸化的Orc6定位于核仁组织中心并调节核糖体生物发生。我们的结果表明,在T195磷酸化的Orc6阻止了复制。
    The human Origin Recognition Complex (ORC) is required not only for the initiation of DNA replication, but is also implicated in diverse cellular functions, including chromatin organization, centrosome biology, and cytokinesis. The smallest subunit of ORC, Orc6, is poorly conserved amongst eukaryotes. Recent studies from our laboratory have suggested that human Orc6 is not required for replication licensing, but is needed for S-phase progression. Further, ATR-dependent phosphorylation of Orc6 at T229 is implicated in DNA damage response during S-phase. In this study, we demonstrate that the CDK-dependent phosphorylation of Orc6 at T195 occurs during mitosis. While the phosphorylation at T195 does not seem to be required to exit mitosis, cells expressing the phosphomimetic T195E mutant of Orc6 impede S-phase progression. Moreover, the phosphorylated form of Orc6 associates with ORC more robustly, and Orc6 shows enhanced association with the ORC outside of G1, supporting the view that Orc6 may prevent the role of Orc1-5 in licensing outside of G1. Finally, Orc6 and the phosphorylated Orc6 localize to the nucleolar organizing centers and regulate ribosome biogenesis. Our results suggest that phosphorylated Orc6 at T195 prevents replication.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    RNA拖尾机制将核苷酸添加到涉及各种生化功能的RNA分子的3'末端,包括蛋白质合成和RNA稳定性。这里,我们报道了RNA拖尾机制作为细胞内淀粉样生成的酶修饰剂的作用。靶向RNA干扰筛选鉴定了末端核苷酸基转移酶4b(TENT4b/Papd5)是核仁向固体样淀粉样蛋白体的淀粉样相变的必需参与者。全长和mRNA测序揭示了starRNA,由TENT4b合成的一类非常长的非模板化RNA分子。StarRNA由短rRNA片段组成,线性混合尾巴,可作为细胞和体外淀粉样蛋白生成的聚阴离子刺激剂。核糖体基因间间隔非编码RNA(rIGSRNA)在核内病灶中招募TENT4b,以协调starRNA合成,驱动其淀粉样相变。外切核糖核酸酶RNA外泌体降解starRNA,并充当细胞淀粉样蛋白生成的一般抑制剂。我们认为,淀粉样相变是在RNA拖尾和外泌体轴的严格酶控制下进行的。
    The RNA tailing machinery adds nucleotides to the 3\'-end of RNA molecules that are implicated in various biochemical functions, including protein synthesis and RNA stability. Here, we report a role for the RNA tailing machinery as enzymatic modifiers of intracellular amyloidogenesis. A targeted RNA interference screen identified Terminal Nucleotidyl-transferase 4b (TENT4b/Papd5) as an essential participant in the amyloidogenic phase transition of nucleoli into solid-like Amyloid bodies. Full-length-and-mRNA sequencing uncovered starRNA, a class of unusually long untemplated RNA molecules synthesized by TENT4b. StarRNA consists of short rRNA fragments linked to long, linear mixed tails that operate as polyanionic stimulators of amyloidogenesis in cells and in vitro. Ribosomal intergenic spacer noncoding RNA (rIGSRNA) recruit TENT4b in intranucleolar foci to coordinate starRNA synthesis driving their amyloidogenic phase transition. The exoribonuclease RNA Exosome degrades starRNA and functions as a general suppressor of cellular amyloidogenesis. We propose that amyloidogenic phase transition is under tight enzymatic control by the RNA tailing and exosome axis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    聚合酶I(PolI)位于核糖体RNA(rRNA)合成的中心。PolI是治疗癌症的靶标。鉴于癌症和神经变性之间的许多细胞共性(即,同一枚硬币的不同面),考虑瞄准PolI或,更一般地说,rRNA合成用于治疗与终末分化神经元死亡相关的疾病。原则上,核糖体合成蛋白质,and,因此,PolI可以被认为是蛋白质合成的起点。鉴于异常蛋白质如α-突触核蛋白和tau的细胞积累是神经退行性疾病如帕金森病和额颞叶痴呆的基本特征,减少蛋白质产生现在被认为是治疗这些和密切相关的神经退行性疾病的可行目标。聚合酶I活性和rRNA产生的异常也可能与核和核仁应激有关,DNA损伤,和童年开始的神经元死亡,UBTFE210K神经回归综合征也是如此。此外,抑制PolI的活性可能是减缓衰老的可行策略。在开始使用PolI抑制治疗神经系统非癌性疾病之前,必须回答许多问题。首先,神经元能耐受多少PolI抑制,以及多长时间?PolI的抑制应该是连续的还是脉冲的?细胞会通过上调活性rDNA的数量来补偿PolI的抑制吗?目前,我们对阿尔茨海默病没有有效和安全的疾病调节疗法,α-突触核蛋白病,或者tau蛋白病,必须探索新的治疗目标和方法。
    Polymerase I (Pol I) is at the epicenter of ribosomal RNA (rRNA) synthesis. Pol I is a target for the treatment of cancer. Given the many cellular commonalities between cancer and neurodegeneration (i.e., different faces of the same coin), it seems rational to consider targeting Pol I or, more generally, rRNA synthesis for the treatment of disorders associated with the death of terminally differentiated neurons. Principally, ribosomes synthesize proteins, and, accordingly, Pol I can be considered the starting point for protein synthesis. Given that cellular accumulation of abnormal proteins such as α-synuclein and tau is an essential feature of neurodegenerative disorders such as Parkinson disease and fronto-temporal dementia, reduction of protein production is now considered a viable target for treatment of these and closely related neurodegenerative disorders. Abnormalities in polymerase I activity and rRNA production may also be associated with nuclear and nucleolar stress, DNA damage, and childhood-onset neuronal death, as is the case for the UBTF E210K neuroregression syndrome. Moreover, restraining the activity of Pol I may be a viable strategy to slow aging. Before starting down the road of Pol I inhibition for treating non-cancerous disorders of the nervous system, many questions must be answered. First, how much Pol I inhibition can neurons tolerate, and for how long? Should inhibition of Pol I be continuous or pulsed? Will cells compensate for Pol I inhibition by upregulating the number of active rDNAs? At present, we have no effective and safe disease modulatory treatments for Alzheimer disease, α-synucleinopathies, or tauopathies, and novel therapeutic targets and approaches must be explored.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    我们之前已经表明,非常规肌球蛋白VI(MVI),一种独特的基于肌动蛋白的运动蛋白,神经分泌PC12细胞的细胞质和细胞核之间以刺激依赖性方式穿梭,并与参与核过程的许多蛋白质相互作用。在确定的潜在MVI合作伙伴是核仁素,与rRNA加工和核糖体组装有关的主要核仁蛋白。其他几种核仁蛋白,如纤维蛋白,UBF(上游结合因子),和B23(也称为核磷蛋白)已显示与MVI相互作用。生物信息学工具预测了MVI球状尾域中核仁定位信号(NoLS)的存在,免疫染色证实核仁内存在MVI。MVI耗尽,先前显示会损害PC12细胞的增殖和运动,引起核仁和粗面内质网(rER)的解体。然而,缺乏MVI不影响核仁转录。根据这些数据,我们认为MVI对核仁和核糖体的维持很重要,但对RNA聚合酶1相关的转录不重要。
    We have previously shown that unconventional myosin VI (MVI), a unique actin-based motor protein, shuttles between the cytoplasm and nucleus in neurosecretory PC12 cells in a stimulation-dependent manner and interacts with numerous proteins involved in nuclear processes. Among the identified potential MVI partners was nucleolin, a major nucleolar protein implicated in rRNA processing and ribosome assembly. Several other nucleolar proteins such as fibrillarin, UBF (upstream binding factor), and B23 (also termed nucleophosmin) have been shown to interact with MVI. A bioinformatics tool predicted the presence of the nucleolar localization signal (NoLS) within the MVI globular tail domain, and immunostaining confirmed the presence of MVI within the nucleolus. Depletion of MVI, previously shown to impair PC12 cell proliferation and motility, caused disorganization of the nucleolus and rough endoplasmic reticulum (rER). However, lack of MVI does not affect nucleolar transcription. In light of these data, we propose that MVI is important for nucleolar and ribosome maintenance but not for RNA polymerase 1-related transcription.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    核仁是哺乳动物细胞中最大的无膜细胞器和核体。它主要参与核糖体的生物发生,负责合成细胞所需的所有蛋白质的必需大分子机器。核糖体的组装在进化上是保守的,并且是细胞生长所需的最消耗能量的细胞过程,扩散,和稳态。尽管这个过程很重要,前核糖体生物发生中核仁功能的亚结构机制原理直到最近才开始出现。这里,我们提供了一个新的观点,使用先进的超分辨率显微镜和单分子MINFLUX纳米镜对控制核糖体RNA种子的核仁形成的机制原理,在某种程度上,通过液-液相分离。随着核糖体生物合成中间体的低温电子显微镜(cryoEM)结构分析的最新进展,我们强调了目前对核仁前核糖体亚基逐步组装的理解.最后,我们探讨了新的抗癌药物候选物如何靶向核糖体生物发生的早期步骤,以利用这些基本依赖性来抑制生长和控制肿瘤。
    The nucleolus is the largest membraneless organelle and nuclear body in mammalian cells. It is primarily involved in the biogenesis of ribosomes, essential macromolecular machines responsible for synthesizing all proteins required by the cell. The assembly of ribosomes is evolutionarily conserved and accounts for the most energy-consuming cellular process needed for cell growth, proliferation, and homeostasis. Despite the significance of this process, the substructural mechanistic principles of the nucleolar function in preribosome biogenesis have only recently begun to emerge. Here, we provide a new perspective using advanced super-resolution microscopy and single-molecule MINFLUX nanoscopy on the mechanistic principles governing ribosomal RNA-seeded nucleolar formation and the resulting tripartite suborganization of the nucleolus driven, in part, by liquid-liquid phase separation. With recent advances in the cryogenic electron microscopy (cryoEM) structural analysis of ribosome biogenesis intermediates, we highlight the current understanding of the step-wise assembly of preribosomal subunits in the nucleolus. Finally, we address how novel anticancer drug candidates target early steps in ribosome biogenesis to exploit these essential dependencies for growth arrest and tumor control.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    随着辅助生殖技术(ART)的应用日益广泛,获得高质量的卵母细胞和早期胚胎已成为备受关注的焦点。在小鼠中的研究发现,染色质构象从非包围核仁(NSN)到包围核仁(SN)的转变对于卵母细胞成熟和早期胚胎发育至关重要。人类卵母细胞中也存在类似的染色质转变。在这项研究中,我们收集了人类NSN和SN卵母细胞,并研究了它们的转录组。差异表达基因的分析表明,表观遗传功能,细胞周期蛋白依赖性激酶和转座因子可能在人类卵母细胞成熟过程中的染色质转变中起重要作用。我们的发现为人类卵母细胞NSN到SN转换的分子机制提供了新的见解,并为改进卵母细胞体外成熟技术提供了新的线索。
    With increasingly used assisted reproductive technology (ART), the acquisition of high-quality oocytes and early embryos has become the focus of much attention. Studies in mice have found that the transition of chromatin conformation from non-surrounded nucleolus (NSN) to surrounded nucleolus (SN) is essential for oocyte maturation and early embryo development, and similar chromatin transition also exists in human oocytes. In this study, we collected human NSN and SN oocytes and investigated their transcriptome. The analysis of differentially expressed genes showed that epigenetic functions, cyclin-dependent kinases and transposable elements may play important roles in chromatin transition during human oocyte maturation. Our findings provide new insights into the molecular mechanism of NSN-to-SN transition of human oocyte and obtained new clues for improvement of oocyte in vitro maturation technique.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号