Nanofluidics

纳米流体
  • 文章类型: Journal Article
    二维聚合物(2DP)及其层叠的2D共价有机框架(2DCOF)膜具有获取可持续渗透能的巨大潜力。新生的研究尚未同时实现高离子通量和选择性,主要是由于低效的离子传输动力学。这与超小孔径(<3nm)直接相关,远小于稀释电解质中的双德拜长度(6〜20nm),以及低电荷密度(<4.5mCm-2)。这里,我们介绍了一种基于π共轭紫精的2DP(V2DP)膜,该膜具有4.5nm的大孔径,战略性地加强双电层的重叠,加上特殊的正表面电荷密度(~6mCm-2)。这些特性使膜能够促进高阴离子通量,同时保持理想的选择性。值得注意的是,V2DP膜实现了令人印象深刻的5.5×103Am-2的电流密度,超过了以前的纳米流体膜。在涉及人工海水和河水混合的实际应用场景中,V2DP膜表现出相当大的离子向Cl-转移数0.70,为〜55Wm-2的出色功率密度做出贡献。理论计算表明,大量的阴离子转运位点作为均匀位于带正电荷的含N吡啶环中的结合位点。
    Two-dimensional polymers (2DPs) and their layer-stacked 2D covalent organic frameworks (2D COFs) membranes hold great potential for harvesting sustainable osmotic energy. The nascent research has yet to simultaneously achieve high ionic flux and selectivity, primarily due to inefficient ion transport dynamics. This is directly related to ultrasmall pore size (<3 nm), much smaller than the duple Debye length in the diluted electrolyte (6~20 nm), as well as low charge density (<4.5 mC m-2). Here, we introduce a π-conjugated viologen-based 2DP (V2DP) membrane possessing a large pore size of 4.5 nm, strategically enhancing the overlapping of the electric double layer, coupled with an exceptional positive surface charge density (~6 mC m-2). These characteristics enable the membrane to facilitate high anion flux while maintaining ideal selectivity. Notably, V2DP membranes realize an impressive current density of 5.5×103 A m-2, surpassing  previously nanofluidic membranes. In practical application scenario involving the mixing of artificial seawater and river water, the V2DP membranes exhibit a considerable ion transference number of 0.70 towards Cl-, contributing to an outstanding power density of ~55 W m-2. Theoretical calculations reveal that the large quantity of anion transport sites act as binding sites evenly located in the positively charged N-containing pyridine rings.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    随着微流体和纳米流体的最新进展,小型化系统吸引了很多关注。从毛细管电泳,基于玻璃的微流体和纳米流体技术的发展支持了微流体和纳米流体的进步。大多数微流体系统,特别是纳米流体系统,仍然很简单,例如用简单的直纳米通道和大尺度电极构建的系统。开发更复杂和复杂的系统的瓶颈之一是开发局部集成的纳米电极。然而,将纳米电极集成到纳米流体装置中仍然存在问题,因为难以在纳米水平将纳米电极尺寸适配到纳米流体通道中。在这项研究中,我们提出了一种基于纳米流体和纳米电化学的实验在纳米流体器件中制造局部纳米电极的新方法。在控制流量和电镀反应的情况下,将电镀溶液引入纳米通道。由此成功地制造了纳米电极。此外,纳米流体装置可用于应用200kPa的纳米流体实验。该方法可应用于任何电镀材料,例如金和铜。局部纳米电极将为开发更复杂和复杂的纳米流体电泳系统以及用于各种纳米流体设备的局部电检测方法做出重大贡献。
    Miniaturized systems have attracted much attention with the recent advances in microfluidics and nanofluidics. From the capillary electrophoresis, the development of glass-based microfluidic and nanofluidic technologies has supported advances in microfluidics and nanofluidics. Most microfluidic systems, especially nanofluidic systems, are still simple, such as systems constructed with simple straight nanochannels and bulk-scale electrodes. One of the bottlenecks to the development of more complicated and sophisticated systems is to develop the locally integrated nano-electrodes. However, there are still issues with integrating nano-electrodes into nanofluidic devices because it is difficult to fit the nano-electrode size into a nanofluidic channel at the nanometer level. In this study, we propose a new method for the fabrication of local nano-electrodes in nanofluidic devices with nanofluidic and nano-electrochemistry-based experiments. An electroplating solution was introduced to a nanochannel with control of the flow and the electroplating reaction, by which nano-electrodes were successfully fabricated. In addition, a nanofluidic device was available for nanofluidic experiments with the application of 200 kPa. This method can be applied to any electroplating material such as gold and copper. The local nano-electrode will make a significant contribution to the development of more complicated and sophisticated nanofluidic electrophoresis systems and to local electric detection methods for various nanofluidic devices.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    生物离子通道的优雅和准确性激发了具有类似特性的人造设备的制造。这里,我们报告了能够以纳摩尔(nmol)精度输送离子的离子电子器件的制造。用厚度为45±5.5μm的重构五氧化二钒(VO)膜制备的三角形纳米流体装置可以连续递送K+,Na+,和Ca2+离子的速率分别为0.44±0.24、0.35±0.06和0.03nmol/min,分别。离子流速可以通过调节源池的膜厚度和盐浓度来进一步调节。三角形VO设备还可以通过用镍铬合金线(NW)电热加热(33°C)或施加特定强度的光来输送最小剂量(〜132±9.7nmol)的离子。重建的基于层状材料的纳米流体装置的制造过程的简单性允许设计复杂的离子装置,例如三端Ni-VO(3T-Ni-VO)装置。
    The elegance and accuracy of biological ion channels inspire the fabrication of artificial devices with similar properties. Here, we report the fabrication of iontronic devices capable of delivering ions at the nanomolar (nmol) level of accuracy. The triangular nanofluidic device prepared with reconstructed vanadium pentoxide (VO) membranes of thickness 45 ± 5.5 μm can continuously deliver K+, Na+, and Ca2+ ions at the rate of 0.44 ± 0.24, 0.35 ± 0.06, and 0.03 nmol/min, respectively. The ionic flow rate can be further tuned by modulating the membrane thickness and salt concentration at the source reservoir. The triangular VO device can also deliver ions in minuscule doses (∼132 ± 9.7 nmol) by electrothermally heating (33 °C) with a nichrome wire (NW) or applying light of specific intensities. The simplicity of the fabrication process of reconstructed layered material-based nanofluidic devices allows the design of complicated iontronic devices such as the three-terminal-Ni-VO (3T-Ni-VO) devices.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在基于二维纳米材料的膜中研究了从盐度梯度中收集纳米流体能量,具有高离子选择性和快速离子传输等有希望的性能。此外,朝着可扩展的方向前进,可行的系统需要环保材料,以使应用可持续。粘土基膜具有环保的吸引力,无危险,和易于操作的材料。然而,实现基于粘土的膜的水下稳定性仍然具有挑战性。在这项工作中,合成粘土Laponite用于制备具有高稳定性和优异的渗透能量收集性能的粘土基膜。通过低温退火处理使Laponite膜(Lap-filmes)稳定,以有效减少层间空间,在盐度梯度下实现连续运行。此外,在水中浸泡一个月以上时,膜可以保持完整性。输出功率密度从原始膜上的约4.97Wm-2提高到在300°C下处理12小时的膜中的约9.89Wm-2,浓度梯度为30倍。尤其是,发现层间水的存在有利于离子传输。在涉及有效离子选择性的Lap膜中提出了不同的机制,以及随着退火温度的变化而发现的状态。这项工作证明了基于Laponite的纳米材料在纳米流体能量收集中的潜在应用。
    Nanofluidic energy harvesting from salinity gradients is studied in 2D nanomaterials-based membranes with promising performance as high ion selectivity and fast ion transport. In addition, moving forward to scalable, feasible systems requires environmentally friendly materials to make the application sustainable. Clay-based membranes are attractive for being environmentally friendly, non-hazardous, and easy to manipulate materials. However, achieving underwater stability for clay-based membranes remains challenging. In this work, the synthetic clay Laponite is used to prepare clay-based membranes with high stability and excellent performance for osmotic energy harvesting. The Laponite membranes (Lap-membranes) are stabilized by low-temperature annealing treatment to effectively reduce the interlayer space, achieving a continuous operation under salinity gradients. Furthermore, the Lap-membranes conserve integrity while soaking in water for more than one month. The output power density improves from ≈4.97 W m-2 on the pristine membrane to ≈9.89 W m-2 in the membrane treated 12 h at 300 °C from a 30-fold concentration gradient. Especially, It is found that the presence of interlayer water to be favorable for ion transport. Different mechanisms are proposed in the Lap-membranes involved for efficient ion selectivity and the states found with varying annealing temperatures. This work demonstrates the potential application of Laponite based nanomaterials for nanofluidic energy harvesting.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    生物信号与离子和纳米流体运输途径之间的相互关系相关。然而,具有可重构离子-流体传输相互作用方面的人工体现在很大程度上仍然难以捉摸。在这里,我们揭示了纳米孔驱动的前进流和离子运输之间的密切相互作用,以在纳米多孔薄膜水平上自发吸收水溶液。离子因素主导运输现象处理和整合(离子影响流体运动,反过来又控制着自我调节的离子行进)。我们展示了离子诱导的翻译效应,可以很好地转换化学输入,离子的性质,转化为相关的流体输出:吸入程度的调节。我们进一步发现了由离子类型和种群引起的复杂的渗吸动力学。我们特别确定了一个走走停停的有效传输过程,并具有由选择性宾主交互触发的可编程延迟时间。离子-流体传输相互作用通过一个简单的模型来捕获,该模型考虑了毛细管渗透和溶液浓度之间的平衡,由于纳米多孔膜-空气界面的失水。我们的结果表明,纳米孔网络为理解和控制自主宏观液体运动提供了新的方案,并为智能离子操作提供了独特的工作原理。
    Biological signaling correlates with the interrelation between ion and nanofluidic transportation pathways. However, artificial embodies with reconfigurable ion-fluid transport interaction aspects remain largely elusive. Herein, we unveiled an intimate interplay between nanopore-driven advancing flow and ion carriage for the spontaneous imbibition of aqueous solutions at the nanoporous thin film level. Ionic factors dominate transport phenomena processing and integration (ions influence fluid motion, which in turn governs the self-regulated ion traveling). We show an ion-induced translation effect that finely converts a chemical input, the nature of ions, into a related fluidic output: modulation of the extent of imbibition. We further find complex imbibition dynamics induced by the ion type and population. We peculiarly pinpoint a stop-and-go effective transport process with a programmable delay time triggered by selective guest-host interactions. The ion-fluid transport interplay is captured by a simple model that considers the counterbalance between the capillary infiltration and solution concentration, owing to water loss at the nanoporous film-air interface. Our results demonstrate that nanopore networks present fresh scenarios for understanding and controlling autonomous macroscopic liquid locomotion and offer a distinctive working principle for smart ion operation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    纳米流体的基础可以在各种应用中取得进展,如水淡化,能量收集,生物分析。动态操纵纳米流体特性,比如扩散和摩擦,是一个非常有科学兴趣的领域。扭曲双层石墨烯,特别是在神奇的角度,由于强烈的电子相关性,其非常规超导性和相关的绝缘体行为引起了人们的注意。扭曲双层石墨烯中莫尔图案的电子性质对水的结构和动态性质的影响仍未被探索。计算挑战,源于使用密度泛函理论模拟大单位细胞,阻碍了进展。本研究通过研究扭曲双层石墨烯上的水行为来解决这一差距,采用深度神经网络电位(DP)模型,使用来自从头算分子动力学模拟的数据集进行训练。发现当扭曲角接近魔角时,界面水摩擦增加,导致水扩散减少。值得注意的是,分析表明,在较小的扭曲角度和较大的莫尔图案下,与AB(或BA)堆叠区域相比,水更可能存在于AA堆叠区域,随着较小的莫尔图案而减少的区别。这项研究说明了利用莫尔系统的独特特性来有效控制和优化界面流体行为的潜力。
    Foundations of nanofluidics can enable advances in diverse applications such as water desalination, energy harvesting, and biological analysis. Dynamically manipulating nanofluidic properties, such as diffusion and friction, is an area of great scientific interest. Twisted bilayer graphene, particularly at the magic angle, has garnered attention for its unconventional superconductivity and correlated insulator behavior due to strong electronic correlations. The impact of the electronic properties of moiré patterns in twisted bilayer graphene on structural and dynamic properties of water remains largely unexplored. Computational challenges, stemming from simulating large unit cells using density functional theory, have hindered progress. This study addresses this gap by investigating water behavior on twisted bilayer graphene, employing a deep neural network potential (DP) model trained with a data set from ab initio molecular dynamics simulations. It is found that as the twisted angle approaches the magic angle, interfacial water friction increases, leading to a reduced water diffusion. Notably, the analysis shows that at smaller twisted angles with larger moiré patterns, water is more likely to reside in AA stacking regions than AB (or BA) stacking regions, a distinction that diminishes with smaller moiré patterns. This study illustrates the potential for leveraging the distinctive properties of moiré systems to effectively control and optimize interfacial fluid behavior.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目的:本研究比较了新的SysmexPA-100AST系统的结果,现场护理分析仪,使用常规微生物学技术直接从尿液中检测尿路感染(UTI)和抗菌药物敏感性试验(AST)。
    方法:在SysmexPA-100中测试了来自278名疑似无并发症UTI的女性患者的天然尿液样本,并采用常规微生物学的参考方法:尿培养的细菌尿和AST的椎间盘扩散。
    结果:分析仪在15分钟内提供了菌尿结果,在45分钟内提供了AST结果。微生物学证实的菌尿检测的敏感性和特异性分别为84.0%(89/106;95%CI:75.6-90.4%)和99.4%(155/156;95%CI:96.5-100%),分别,用于分析仪规范内的细菌种类。这些是大肠杆菌,肺炎克雷伯菌,变形杆菌,粪肠球菌和腐生葡萄球菌,这是常见的物种导致简单的UTI。SysmexPA-100(阿莫西林/克拉维酸,环丙沙星,磷霉素,呋喃妥因和甲氧苄啶)范围从环丙沙星的85.4%(70/82;95CI:75.9-92.2%)到甲氧苄啶的96.4%(81/84;95%CI:89.9-99.3%)。SysmexPA-100在218/278例(78.4%)中提供了最佳治疗建议,与162/278(58.3%)的临床决策相反。
    结论:在患者附近对SysmexPA-100进行的首次临床评估表明,分析仪在45分钟内提供了表型AST结果,这可以快速启动正确的靶向治疗,而无需进一步调整。SysmexPA-100具有显着减少UTI症状患者无效或不必要的抗生素处方的潜力。
    OBJECTIVE: This study compared the results of the new Sysmex PA-100 AST System, a point-of-care analyser, with routine microbiology for the detection of urinary tract infections (UTI) and performance of antimicrobial susceptibility tests (AST) directly from urine.
    METHODS: Native urine samples from 278 female patients with suspected uncomplicated UTI were tested in the Sysmex PA-100 and with reference methods of routine microbiology: urine culture for bacteriuria and disc diffusion for AST.
    RESULTS: The analyser delivered bacteriuria results in 15 min and AST results within 45 min. Sensitivity and specificity for detection of microbiologically confirmed bacteriuria were 84.0% (89/106; 95% CI: 75.6-90.4%) and 99.4% (155/156; 95% CI: 96.5-100%), respectively, for bacterial species within the analyser specifications. These are Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Enterococcus faecalis and Staphylococcus saprophyticus, which are common species causing uncomplicated UTI. Overall categorical agreement (OCA) for AST results for the five antimicrobials tested in the Sysmex PA-100 (amoxicillin/clavulanic acid, ciprofloxacin, fosfomycin, nitrofurantoin and trimethoprim) ranged from 85.4% (70/82; 95%CI: 75.9-92.2%) for ciprofloxacin to 96.4% (81/84; 95% CI: 89.9-99.3%) for trimethoprim. The Sysmex PA-100 provided an optimal treatment recommendation in 218/278 cases (78.4%), against 162/278 (58.3%) of clinical decisions.
    CONCLUSIONS: This first clinical evaluation of the Sysmex PA-100 in a near-patient setting demonstrated that the analyser delivers phenotypic AST results within 45 min, which could enable rapid initiation of the correct targeted treatment with no further adjustment needed. The Sysmex PA-100 has the potential to significantly reduce ineffective or unnecessary antibiotic prescription in patients with UTI symptoms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    手性异构体的识别和分离在工业和生物应用中都非常重要。然而,由于对映体的分子式和化学性质相同,信号转导和放大仍然是手性传感的两大挑战。在这项研究中,我们通过将手性共价有机骨架纳米片(CONs)与纳米通道集成,开发了一种对映选择性装置,用于对对映异构体的灵敏鉴定和定量。使用3,4-二羟基苯丙氨酸(DOPA)作为模型分析物,与d-DOPA相比,所制备的手性纳米流体装置对l-DOPA具有显着的手性识别能力。更重要的是,由于DOPA与Fe3+离子螯合,它可以有效地阻止离子通过通道传输并屏蔽通道表面电荷,这将放大l-DOPA和d-DOPA的电化学响应的差异。因此,灵敏的手性识别可以使用本发明的使用电化学放大策略耦合的纳米流体装置来实现。值得注意的是,使用这种方法,可以在1pM-10μM的线性范围内轻松成功地检测到超低浓度的1-DOPA(低至0.21pM)。本研究为实现手性分子的高选择性检测提供了一种可靠而灵敏的方法。
    Recognition and separation of chiral isomers are of great importance in both industrial and biological applications. However, owing to identical molecular formulas and chemical properties of enantiomers, signal transduction and amplification are still two major challenges in chiral sensing. In this study, we developed an enantioselective device by integrating chiral covalent organic framework nanosheets (CONs) with nanochannels for sensitive identification and quantification of enantiomers. Using 3,4-dihydroxyphenylalanine (DOPA) as the model analyte, the as-prepared chiral nanofluidic device exhibits a remarkable chiral recognition ability to l-DOPA than d-DOPA. More importantly, due to the chelation of DOPA with Fe3+ ions, it can efficiently block the ion transport through channel and shield the channel surface charge, which will amplify the difference in the electrochemical response of l-DOPA and d-DOPA. Therefore, a sensitive chiral recognition can be achieved using the present nanofluidic device coupled using electrochemical amplification strategy. Notably, using this method, an ultra-low concentration of l-DOPA (as low as 0.21 pM) can be facilely and successfully detected with a linear range of 1 pM-10 μM. This study provides a reliable and sensitive approach for achieving highly selective detection of chiral molecules.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    长期以来,生物医学应用和基于离子的智能系统一直追求能够模仿人工流体网络中生物系统功能的Iontronics。这里,我们报告了具有三层聚电解质凝胶结构的iontronic双极忆阻器的容易和强大的实现。成功实现了离子电流的显着忆阻滞后,并且记忆时间被证明在200至4000s之间具有几何可伸缩性。这些特性是通过聚电解质凝胶内的离子浓度极化诱导的整流比实现的。忆阻器表现出类似于在单极设备中观察到的记忆动力学,而双极结构显着延长了存储时间,并以中尺度(10-1000μm)的几何精度提高了离子电导切换率。这些特性赋予设备以基于脉冲的输入电压信号进行有效神经形态处理的能力。由于其简单的制造工艺和优越的忆阻性能,所提出的iontronic双极忆阻器是通用的,可以很容易地集成到小型iontronic电路,从而促进先进的神经形态计算功能。
    Iontronics that are capable of mimicking the functionality of biological systems within an artificial fluidic network have long been pursued for biomedical applications and ion-based intelligence systems. Here, we report on facile and robust realization of iontronic bipolar memristors featuring a three-layer polyelectrolyte gel structure. Significant memristive hysteresis of ion currents was successfully accomplished, and the memory time proved geometrically scalable from 200 to 4000 s. These characteristics were enabled by the ion concentration polarization-induced rectification ratio within the polyelectrolyte gels. The memristors exhibited memory dynamics akin to those observed in unipolar devices, while the bipolar structure notably enabled prolonged memory time and enhanced the ion conductance switching ratio with mesoscale (10-1000 μm) geometry precision. These properties endow the devices with the capability of effective neuromorphic processing with pulse-based input voltage signals. Owing to their simple fabrication process and superior memristive performance, the presented iontronic bipolar memristors are versatile and can be easily integrated into small-scale iontronic circuits, thereby facilitating advanced neuromorphic computing functionalities.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    膜中的纳米流体通道代表了利用盐度梯度中的蓝色能量的有希望的途径,依赖于选择通过扩散离子传输诱导电的关键特性。表面电荷在渗透能量转换过程中作为中心角色出现,强调明智选择膜材料以在特定通道尺寸内获得最佳离子渗透性和选择性的关键意义。或者,在这里,我们报告了一种场效应方法,用于原位操纵纳米孔中的离子选择性。向环绕栅电极施加电压允许精确调节孔壁处的表面电荷密度。利用门控控制,我们证明了在多孔膜中选择性转化为增强的阳离子选择性转运,在盐度梯度下,功率密度为15W/m2时,能量转换效率提高了6倍。这些发现不仅促进了我们对纳米通道中离子传输的基本理解,而且为纳米多孔膜渗透发电提供了可扩展且有效的策略。
    Nanofluidic channels in a membrane represent a promising avenue for harnessing blue energy from salinity gradients, relying on permselectivity as a pivotal characteristic crucial for inducing electricity through diffusive ion transport. Surface charge emerges as a central player in the osmotic energy conversion process, emphasizing the critical significance of a judicious selection of membrane materials to achieve optimal ion permeability and selectivity within specific channel dimensions. Alternatively, here we report a field-effect approach for in situ manipulation of the ion selectivity in a nanopore. Application of voltage to a surround-gate electrode allows precise adjustment of the surface charge density at the pore wall. Leveraging the gating control, we demonstrate permselectivity turnover to enhanced cation selective transport in multipore membranes, resulting in a 6-fold increase in the energy conversion efficiency with a power density of 15 W/m2 under a salinity gradient. These findings not only advance our fundamental understanding of ion transport in nanochannels but also provide a scalable and efficient strategy for nanoporous membrane osmotic power generation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号