Nanofluidics

纳米流体
  • 文章类型: Journal Article
    二维聚合物(2DP)及其层叠的2D共价有机框架(2DCOF)膜具有获取可持续渗透能的巨大潜力。新生的研究尚未同时实现高离子通量和选择性,主要是由于低效的离子传输动力学。这与超小孔径(<3nm)直接相关,远小于稀释电解质中的双德拜长度(6〜20nm),以及低电荷密度(<4.5mCm-2)。这里,我们介绍了一种基于π共轭紫精的2DP(V2DP)膜,该膜具有4.5nm的大孔径,战略性地加强双电层的重叠,加上特殊的正表面电荷密度(~6mCm-2)。这些特性使膜能够促进高阴离子通量,同时保持理想的选择性。值得注意的是,V2DP膜实现了令人印象深刻的5.5×103Am-2的电流密度,超过了以前的纳米流体膜。在涉及人工海水和河水混合的实际应用场景中,V2DP膜表现出相当大的离子向Cl-转移数0.70,为〜55Wm-2的出色功率密度做出贡献。理论计算表明,大量的阴离子转运位点作为均匀位于带正电荷的含N吡啶环中的结合位点。
    Two-dimensional polymers (2DPs) and their layer-stacked 2D covalent organic frameworks (2D COFs) membranes hold great potential for harvesting sustainable osmotic energy. The nascent research has yet to simultaneously achieve high ionic flux and selectivity, primarily due to inefficient ion transport dynamics. This is directly related to ultrasmall pore size (<3 nm), much smaller than the duple Debye length in the diluted electrolyte (6~20 nm), as well as low charge density (<4.5 mC m-2). Here, we introduce a π-conjugated viologen-based 2DP (V2DP) membrane possessing a large pore size of 4.5 nm, strategically enhancing the overlapping of the electric double layer, coupled with an exceptional positive surface charge density (~6 mC m-2). These characteristics enable the membrane to facilitate high anion flux while maintaining ideal selectivity. Notably, V2DP membranes realize an impressive current density of 5.5×103 A m-2, surpassing  previously nanofluidic membranes. In practical application scenario involving the mixing of artificial seawater and river water, the V2DP membranes exhibit a considerable ion transference number of 0.70 towards Cl-, contributing to an outstanding power density of ~55 W m-2. Theoretical calculations reveal that the large quantity of anion transport sites act as binding sites evenly located in the positively charged N-containing pyridine rings.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    手性异构体的识别和分离在工业和生物应用中都非常重要。然而,由于对映体的分子式和化学性质相同,信号转导和放大仍然是手性传感的两大挑战。在这项研究中,我们通过将手性共价有机骨架纳米片(CONs)与纳米通道集成,开发了一种对映选择性装置,用于对对映异构体的灵敏鉴定和定量。使用3,4-二羟基苯丙氨酸(DOPA)作为模型分析物,与d-DOPA相比,所制备的手性纳米流体装置对l-DOPA具有显着的手性识别能力。更重要的是,由于DOPA与Fe3+离子螯合,它可以有效地阻止离子通过通道传输并屏蔽通道表面电荷,这将放大l-DOPA和d-DOPA的电化学响应的差异。因此,灵敏的手性识别可以使用本发明的使用电化学放大策略耦合的纳米流体装置来实现。值得注意的是,使用这种方法,可以在1pM-10μM的线性范围内轻松成功地检测到超低浓度的1-DOPA(低至0.21pM)。本研究为实现手性分子的高选择性检测提供了一种可靠而灵敏的方法。
    Recognition and separation of chiral isomers are of great importance in both industrial and biological applications. However, owing to identical molecular formulas and chemical properties of enantiomers, signal transduction and amplification are still two major challenges in chiral sensing. In this study, we developed an enantioselective device by integrating chiral covalent organic framework nanosheets (CONs) with nanochannels for sensitive identification and quantification of enantiomers. Using 3,4-dihydroxyphenylalanine (DOPA) as the model analyte, the as-prepared chiral nanofluidic device exhibits a remarkable chiral recognition ability to l-DOPA than d-DOPA. More importantly, due to the chelation of DOPA with Fe3+ ions, it can efficiently block the ion transport through channel and shield the channel surface charge, which will amplify the difference in the electrochemical response of l-DOPA and d-DOPA. Therefore, a sensitive chiral recognition can be achieved using the present nanofluidic device coupled using electrochemical amplification strategy. Notably, using this method, an ultra-low concentration of l-DOPA (as low as 0.21 pM) can be facilely and successfully detected with a linear range of 1 pM-10 μM. This study provides a reliable and sensitive approach for achieving highly selective detection of chiral molecules.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    长期以来,生物医学应用和基于离子的智能系统一直追求能够模仿人工流体网络中生物系统功能的Iontronics。这里,我们报告了具有三层聚电解质凝胶结构的iontronic双极忆阻器的容易和强大的实现。成功实现了离子电流的显着忆阻滞后,并且记忆时间被证明在200至4000s之间具有几何可伸缩性。这些特性是通过聚电解质凝胶内的离子浓度极化诱导的整流比实现的。忆阻器表现出类似于在单极设备中观察到的记忆动力学,而双极结构显着延长了存储时间,并以中尺度(10-1000μm)的几何精度提高了离子电导切换率。这些特性赋予设备以基于脉冲的输入电压信号进行有效神经形态处理的能力。由于其简单的制造工艺和优越的忆阻性能,所提出的iontronic双极忆阻器是通用的,可以很容易地集成到小型iontronic电路,从而促进先进的神经形态计算功能。
    Iontronics that are capable of mimicking the functionality of biological systems within an artificial fluidic network have long been pursued for biomedical applications and ion-based intelligence systems. Here, we report on facile and robust realization of iontronic bipolar memristors featuring a three-layer polyelectrolyte gel structure. Significant memristive hysteresis of ion currents was successfully accomplished, and the memory time proved geometrically scalable from 200 to 4000 s. These characteristics were enabled by the ion concentration polarization-induced rectification ratio within the polyelectrolyte gels. The memristors exhibited memory dynamics akin to those observed in unipolar devices, while the bipolar structure notably enabled prolonged memory time and enhanced the ion conductance switching ratio with mesoscale (10-1000 μm) geometry precision. These properties endow the devices with the capability of effective neuromorphic processing with pulse-based input voltage signals. Owing to their simple fabrication process and superior memristive performance, the presented iontronic bipolar memristors are versatile and can be easily integrated into small-scale iontronic circuits, thereby facilitating advanced neuromorphic computing functionalities.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    创建可以与生物神经系统相互作用的人工突触对于开发先进的智能系统至关重要。然而,还有很多困难,包括设备形态和流体选择。基于微机电系统技术,我们利用两种不混溶的电解质在漏斗纳米通道的尖端形成液/液界面,有效地实现晶圆级制造,多个信息载体之间的相互作用,和电子到化学信号转换。独特的离子传输特性成功地实现了离子传输的滞后,导致可调节的多级电导梯度和突触功能。值得注意的是,该装置在结构和信号载体方面类似于生物系统,特别是对于低工作电压(200mV),这与生物神经电位(~110mV)相匹配。这项工作为实现超低工作电压下的iontronics神经形态计算和内存计算功能奠定了基础,这可以打破脑机接口的信息障碍的限制。
    Creating artificial synapses that can interact with biological neural systems is critical for developing advanced intelligent systems. However, there are still many difficulties, including device morphology and fluid selection. Based on Micro-Electro-Mechanical System technologies, we utilized two immiscible electrolytes to form a liquid/liquid interface at the tip of a funnel nanochannel, effectively enabling a wafer-level fabrication, interactions between multiple information carriers, and electron-to-chemical signal transitions. The distinctive ionic transport properties successfully achieved a hysteresis in ionic transport, resulting in adjustable multistage conductance gradient and synaptic functions. Notably, the device is similar to biological systems in terms of structure and signal carriers, especially for the low operating voltage (200 mV), which matches the biological neural potential (∼110 mV). This work lays the foundation for realizing the function of iontronics neuromorphic computing at ultralow operating voltages and in-memory computing, which can break the limits of information barriers for brain-machine interfaces.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    通过反向电渗析从废弃有机溶液中提取渗透能代表了一种有希望的方法来再利用这种工业废物,并有助于减轻不断增长的能源需求。在这里,通过界面聚合设计了共价有机骨架的分子薄膜,以研究其在有机溶液中的离子传输行为。有趣的是,观察到离子电导和倒数粘度之间的线性显着偏差,归因于分子间相互作用的纳米级限制效应。这一发现表明了一种潜在的策略来调节当前粘度对跨膜运输的影响。研究了有机系统中超薄膜的渗透能量收集,在1000倍的盐度梯度下实现超过84.5Wm-2的前所未有的输出功率密度,具有良好的转换效率和出色的稳定性。这些发现为寻求充分利用有机系统在能量收集应用中的潜力的未来研究提供了有意义的垫脚石。
    Extracting osmotic energy from waste organic solutions via reverse electrodialysis represents a promising approach to reuse such industrial wastes and helps to mitigate the ever-growing energy needs. Herein, a molecularly thin membrane of covalent organic frameworks is engineered via interfacial polymerization to investigate its ion transport behavior in organic solutions. Interestingly, a significant deviation from linearity between ion conductance and reciprocal viscosity is observed, attributed to the nanoscale confinement effect on intermolecular interactions. This finding suggests a potential strategy to modulate the influence of apprarent viscosity on transmembrane transport. The osmotic energy harvesting of the ultrathin membrane in organic systems was studied, achieving an unprecedented output power density of over 84.5 W m-2 at a 1000-fold salinity gradient with a benign conversion efficiency and excellent stability. These findings provide a meaningful stepping stone for future studies seeking to fully leverage the potentials of organic systems in energy harvesting applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    忆阻器是神经形态计算的构建块。我们报告了一种基于聚合物纳米孔上弹性应变原理的新型纳米流体忆阻器。纳米粒子被吸收在单个锥形聚合物纳米孔的壁上,我们发现在0.01-0.1Hz的扫描频率范围内电流的收缩磁滞,切换到0.01Hz以下的二极管和0.1Hz以上的电阻。我们将电流滞后归因于纳米孔尖端侧的弹性应变,由吸附在内壁表面的颗粒上的电力引起。我们的模拟和分析方程与实验结果吻合良好,具有用于预测系统过渡的相图。我们证明了我们的纳米流体忆阻器的可塑性类似于生物突触。我们的发现为使用纳米流体忆阻器进行离子神经形态计算铺平了一条新途径。
    The memristor is the building block of neuromorphic computing. We report a new type of nanofluidic memristor based on the principle of elastic strain on polymer nanopores. With nanoparticles absorbed at the wall of a single conical polymer nanopore, we find a pinched hysteresis of the current within a scanning frequency range of 0.01-0.1 Hz, switching to a diode below 0.01 Hz and a resistor above 0.1 Hz. We attribute the current hysteresis to the elastic strain at the tip side of the nanopore, caused by electrical force on the particles adsorbed at the inner wall surface. Our simulation and analytical equations match well with experimental results, with a phase diagram for predicting the system transitions. We demonstrate the plasticity of our nanofluidic memristor to be similar to a biological synapse. Our findings pave a new way for ionic neuromorphic computing using nanofluidic memristors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    天然生物已经进化出各种生物离子通道,以对不同的物理和/或化学刺激做出及时反应。指导构建人工同行,拓展相应应用。它们还显示出克服传统电子设备缺点的有希望的潜力(例如,耗能操作和不利的湿度干扰)。在这里,我们基于Janus双场异质膜构建了一个绿色藻类启发的纳米流体系统(即,J-HM),它可以在水下作为人工视觉平台,通过增强活性离子传输来感知光。J-HM是通过顺序组装的MXene和Cu-HHTP获得的(即,基于2,3,6,7,10,11-六羟基三亚苯基水合物(HHTP)和Cu2+)结构单元之间的反应的金属-有机框架。由于J-HM在光照下的局部热激发和有效的电荷分离所形成的温度梯度和膜内电场,产生热渗和光驱动力,用于从Cu-HHTP到MXene的优先阳离子运输。此外,单向主动传输可以通过浓度梯度下的自扩散来增强。然后,探索了在各种光照条件下相应的水下光感知,与光强度几乎呈线性关系。最后,证明了视觉平台可以实现物体形状,定义,和使用定义的像素化矩阵的距离识别,推动开发基于离子信号传输的传感系统。
    Natural organisms have evolved various biological ion channels to make timely responses toward different physical and/or chemical stimuli, giving guidance to construct artificial counterparts and expand the corresponding applications. They have also shown promising potential to overcome disadvantages of traditional electronic devices (e.g., energy-consuming operation and adverse humidity interference). Herein, we constructed a green alga-inspired nanofluidic system based on a Janus dual-field heterogeneous membrane (i.e., J-HM), which can function underwater as an artificial visual platform for light perception through enhanced active ion transport. The J-HM was obtained through sequentially assembled MXene and Cu-HHTP (i.e., a metal-organic framework based on the reaction between 2,3,6,7,10,11-hexahydroxytriphenylene hydrate (HHTP) and Cu2+) building units. Due to the formed temperature gradient and intramembrane electric field caused by the localized thermal excitation and efficient charge separation of J-HM under illumination, thermo-osmotic and photo-driven forces are generated for preferential cation transport from Cu-HHTP to MXene. Furthermore, unidirectional active transport can be enhanced by self-diffusion under a concentration gradient. Then, the corresponding underwater light perceptions at various light illumination conditions are explored, showing nearly a linear correlation with the light intensity. Finally, it is demonstrated that the visual platform can achieve object shape, definition, and distance recognition using a defined pixelated matrix, giving impetus to develop ionic signal transmission based sensing systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    海水和河水之间的蓝色能量吸引了越来越多的兴趣,作为可从水中收集的可持续和可再生能源之一。在应用于蓝色能量转换的反向电渗析中,作为选择性离子传输介质的具有纳米级限制的新型膜目前对实现更高的功率密度有很高的需求。主要挑战在于构建允许低能量屏障传输的定义明确的纳米通道。在这项工作中,我们提出了一种同时具有双重静电效应的纳米流体通道的概念,可以增强离子选择性和通量。为了实现这一点,我们已经合成了碘化丙啶基二维聚合物(PI-2DP)膜同时具有骨架电荷和固有空间电荷,它们沿着离子传输路径在空间上对齐。PI-2DP的双电荷设计显着增强了易位阴离子与阳离子聚合物骨架之间的静电相互作用,并达到较高的阴离子选择性系数(~0.8)。当混合标准人工海水和河水时,我们实现了48.4Wm-2的相当大的功率密度,优于最先进的纳米流体膜。此外,当应用于地中海和易北河之间时,通过PI-2DP实现42.2Wm-2的输出功率密度。这种具有双层电荷的纳米流体膜设计将激发用于蓝色能量转换的离子选择性通道的更多创新发展,这将有助于全球能源消耗。本文受版权保护。保留所有权利。
    Blue energy between seawater and river water is attracting increasing interest, as one of the sustainable and renewable energy resources that can be harvested from water. Within the reverse electrodialysis applied in blue energy conversion, novel membranes with nanoscale confinement that function as selective ion transport mediums are currently in high demand for realizing higher power density. The primary challenge lies in constructing well-defined nanochannels that allow for low-energy barrier transport. This work proposes a concept for nanofluidic channels with a simultaneous dual electrostatic effect that can enhance both ion selectivity and flux. To actualize this, this work has synthesized propidium iodide-based two-dimensional polymer (PI-2DP) membranes possessing both skeleton charge and intrinsic space charge, which are spatially aligned along the ion transport pathway. The dual charge design of PI-2DP significantly enhances the electrostatic interaction between the translocating anions and the cationic polymer framework, and a high anion selectivity coefficient (≈0.8) is reached. When mixing standard artificial seawater and river water, this work achieves a considerable power density of 48.4 W m-2, outperforming most state-of-the-art nanofluidic membranes. Moreover, when applied between the Mediterranean Sea and the Elbe River, an output power density of 42.2 W m-2 is achieved by the PI-2DP. This nanofluidic membrane design with dual-layer charges will inspire more innovative development of ion-selective channels for blue energy conversion that will contribute to global energy consumption.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    纳米流体忆阻器的出现在模仿生物神经元的神经形态功能方面取得了巨大的飞跃。这里,我们报道了使用埃斯特罗姆尺度的漏斗形通道和在纳米开口处组装的聚-l-赖氨酸(PLL)的神经形态信号传导。我们发现了扫描电压下的频率相关电流-电压特性,它代表一个低频二极管,但随着频率的增加,它显示出电流滞后。电流滞后强烈依赖于pH值,但微弱地依赖于盐浓度。我们将电流滞后归因于进入和离开埃通道的PLL分子的熵屏障,导致可逆的电压门控开-关状态转换。我们使用电压尖峰成功地模拟了Hebbian学习的突触适应,并在每个通道的每个尖峰中获得了2-23fJ的最小能耗。我们的发现为在低能耗下通过Angstrom通道模拟神经元功能铺平了一条新途径。
    The emergence of nanofluidic memristors has made a giant leap to mimic the neuromorphic functions of biological neurons. Here, we report neuromorphic signaling using Angstrom-scale funnel-shaped channels with poly-l-lysine (PLL) assembled at nano-openings. We found frequency-dependent current-voltage characteristics under sweeping voltage, which represents a diode in low frequencies, but it showed pinched current hysteresis as frequency increases. The current hysteresis is strongly dependent on pH values but weakly dependent on salt concentration. We attributed the current hysteresis to the entropy barrier of PLL molecules entering and exiting the Angstrom channels, resulting in reversible voltage-gated open-close state transitions. We successfully emulated the synaptic adaptation of Hebbian learning using voltage spikes and obtained a minimum energy consumption of 2-23 fJ in each spike per channel. Our findings pave a new way to mimic neuronal functions by Angstrom channels in low energy consumption.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    快速传导目标离子同时有效地拒绝竞争离子是具有挑战性的,但对于离子分离相关的应用是高度需要的。二维(2D)通道广泛用于离子分离,但是高选择性2D通道通常遭受相对低的离子电导率。在这里,我们报道了2D蛭石通道的Na电导率高于本体,同时以数百的选择性拒绝重金属离子。这种性能归因于高电负性晶体表面和极窄的通道(高0.2nm),这也得到了从头算分子动力学模拟的支持。我们证明了高选择性和传导性的钠通道可用于从工业废水中收获渗透能量。实现超过20Wm-2的功率密度,同时防止废弃重金属离子污染。这项工作为废水的利用和处理提供了一种策略。此外,调查表明,通过结合奥恩斯特罗姆尺度约束与适当的表面工程,打破离子渗透性-选择性权衡的可能性,这可能导致对以前材料的应用具有挑战性。
    Conducting target ions rapidly while rejecting rival ions efficiently is challenging yet highly demanded for ion separation related applications. Two-dimensional (2D) channels are widely used for ion separation, but highly selective 2D channels generally suffer from a relatively low ionic conductivity. Here we report that the 2D vermiculite channels have a Na+ conductivity higher than bulk and at the same time reject heavy metal ions with a selectivity of a few hundreds. Such performance is attributed to the highly electronegative crystal surface and the extremely narrow channel (0.2 nm high), as also supported by the ab initio molecular dynamics simulation. We demonstrate that the highly selective and conductive sodium channels can be utilized to harvest osmotic power from industrial wastewater, achieving a power density of more than 20 W m-2 while preventing pollution from waste heavy metal ions. This work provides a strategy for wastewater utilization as well as treatment. Moreover, the investigation suggests the possibility to break the ionic permeability-selectivity trade-off by combining Ångstrom-scale confinement with proper surface engineering, which could lead to applications that are challenging for previous materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号