Nanofluidics

纳米流体
  • 文章类型: Journal Article
    在理想条件下,具有固定负管壁电荷的纳米管将拒绝阴离子和仅传输阳离子。由于许多提出的纳米流体装置在这种理想的阳离子选择渗透状态下进行了优化,知道产生理想反应的实验条件是很重要的。一个名为Ccrit的参数,接触溶液中的最高盐浓度仍然产生理想的阳离子选择性,是特别重要的。使用静电模型解释了对金纳米管的开创性电位研究,该模型指出,当接触盐溶液中的德拜长度等于管半径时,应该发生Ccrit。由于这个“双层重叠模型”(DLOM),将所有相同电荷的离子视为相同的点电荷,它预测所有相同电荷的阳离子应该产生相同的Ccrit。然而,从未研究过阳离子对金纳米管中Ccrit的影响。这种知识差距已经变得重要,因为最近对聚合物阳离子选择性渗透纳米孔膜的研究表明,DLOM对于所研究的每种阳离子都失败了。要解决此问题,我们对10nm直径的金纳米管膜的盐阳离子对Ccrit的影响进行了电位研究。研究的所有阳离子的Ccrit,在实验误差内,相同和相同,值由DLOM预测。DLOM对于金纳米管盛行但对于聚合物纳米孔失败的原因源于这两种膜的固定负电荷之间的化学差异。
    Under ideal conditions, nanotubes with a fixed negative tube-wall charge will reject anions and transport-only cations. Because many proposed nanofluidic devices are optimized in this ideally cation-permselective state, it is important to know the experimental conditions that produce ideal responses. A parameter called Ccrit, the highest salt concentration in a contacting solution that still produces ideal cation permselectivity, is of particular importance. Pioneering potentiometric studies on gold nanotubes were interpreted using an electrostatic model that states that Ccrit should occur when the Debye length in the contacting salt solution becomes equivalent to the tube radius. Since this \"double-layer overlap model\" (DLOM), treats all same-charge ions as identical point charges, it predicts that all same-charged cations should produce the same Ccrit. However, the effect of cation on Ccrit in gold nanotubes was never investigated. This knowledge gap has become important because recent studies with a polymeric cation-permselective nanopore membrane showed that DLOM failed for every cation studied. To resolve this issue, we conducted potentiometric studies on the effect of salt cation on Ccrit for a 10 nm diameter gold nanotube membrane. Ccrit for all cations studied were, within experimental error, the same and identical, with values predicted by DLOM. The reason DLOM prevailed for the gold nanotubes but failed for the polymeric nanopores stems from the chemical difference between the fixed negative charges of these two membranes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:本研究比较了新的SysmexPA-100AST系统的结果,现场护理分析仪,使用常规微生物学技术直接从尿液中检测尿路感染(UTI)和抗菌药物敏感性试验(AST)。
    方法:在SysmexPA-100中测试了来自278名疑似无并发症UTI的女性患者的天然尿液样本,并采用常规微生物学的参考方法:尿培养的细菌尿和AST的椎间盘扩散。
    结果:分析仪在15分钟内提供了菌尿结果,在45分钟内提供了AST结果。微生物学证实的菌尿检测的敏感性和特异性分别为84.0%(89/106;95%CI:75.6-90.4%)和99.4%(155/156;95%CI:96.5-100%),分别,用于分析仪规范内的细菌种类。这些是大肠杆菌,肺炎克雷伯菌,变形杆菌,粪肠球菌和腐生葡萄球菌,这是常见的物种导致简单的UTI。SysmexPA-100(阿莫西林/克拉维酸,环丙沙星,磷霉素,呋喃妥因和甲氧苄啶)范围从环丙沙星的85.4%(70/82;95CI:75.9-92.2%)到甲氧苄啶的96.4%(81/84;95%CI:89.9-99.3%)。SysmexPA-100在218/278例(78.4%)中提供了最佳治疗建议,与162/278(58.3%)的临床决策相反。
    结论:在患者附近对SysmexPA-100进行的首次临床评估表明,分析仪在45分钟内提供了表型AST结果,这可以快速启动正确的靶向治疗,而无需进一步调整。SysmexPA-100具有显着减少UTI症状患者无效或不必要的抗生素处方的潜力。
    OBJECTIVE: This study compared the results of the new Sysmex PA-100 AST System, a point-of-care analyser, with routine microbiology for the detection of urinary tract infections (UTI) and performance of antimicrobial susceptibility tests (AST) directly from urine.
    METHODS: Native urine samples from 278 female patients with suspected uncomplicated UTI were tested in the Sysmex PA-100 and with reference methods of routine microbiology: urine culture for bacteriuria and disc diffusion for AST.
    RESULTS: The analyser delivered bacteriuria results in 15 min and AST results within 45 min. Sensitivity and specificity for detection of microbiologically confirmed bacteriuria were 84.0% (89/106; 95% CI: 75.6-90.4%) and 99.4% (155/156; 95% CI: 96.5-100%), respectively, for bacterial species within the analyser specifications. These are Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Enterococcus faecalis and Staphylococcus saprophyticus, which are common species causing uncomplicated UTI. Overall categorical agreement (OCA) for AST results for the five antimicrobials tested in the Sysmex PA-100 (amoxicillin/clavulanic acid, ciprofloxacin, fosfomycin, nitrofurantoin and trimethoprim) ranged from 85.4% (70/82; 95%CI: 75.9-92.2%) for ciprofloxacin to 96.4% (81/84; 95% CI: 89.9-99.3%) for trimethoprim. The Sysmex PA-100 provided an optimal treatment recommendation in 218/278 cases (78.4%), against 162/278 (58.3%) of clinical decisions.
    CONCLUSIONS: This first clinical evaluation of the Sysmex PA-100 in a near-patient setting demonstrated that the analyser delivers phenotypic AST results within 45 min, which could enable rapid initiation of the correct targeted treatment with no further adjustment needed. The Sysmex PA-100 has the potential to significantly reduce ineffective or unnecessary antibiotic prescription in patients with UTI symptoms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    长期以来,生物医学应用和基于离子的智能系统一直追求能够模仿人工流体网络中生物系统功能的Iontronics。这里,我们报告了具有三层聚电解质凝胶结构的iontronic双极忆阻器的容易和强大的实现。成功实现了离子电流的显着忆阻滞后,并且记忆时间被证明在200至4000s之间具有几何可伸缩性。这些特性是通过聚电解质凝胶内的离子浓度极化诱导的整流比实现的。忆阻器表现出类似于在单极设备中观察到的记忆动力学,而双极结构显着延长了存储时间,并以中尺度(10-1000μm)的几何精度提高了离子电导切换率。这些特性赋予设备以基于脉冲的输入电压信号进行有效神经形态处理的能力。由于其简单的制造工艺和优越的忆阻性能,所提出的iontronic双极忆阻器是通用的,可以很容易地集成到小型iontronic电路,从而促进先进的神经形态计算功能。
    Iontronics that are capable of mimicking the functionality of biological systems within an artificial fluidic network have long been pursued for biomedical applications and ion-based intelligence systems. Here, we report on facile and robust realization of iontronic bipolar memristors featuring a three-layer polyelectrolyte gel structure. Significant memristive hysteresis of ion currents was successfully accomplished, and the memory time proved geometrically scalable from 200 to 4000 s. These characteristics were enabled by the ion concentration polarization-induced rectification ratio within the polyelectrolyte gels. The memristors exhibited memory dynamics akin to those observed in unipolar devices, while the bipolar structure notably enabled prolonged memory time and enhanced the ion conductance switching ratio with mesoscale (10-1000 μm) geometry precision. These properties endow the devices with the capability of effective neuromorphic processing with pulse-based input voltage signals. Owing to their simple fabrication process and superior memristive performance, the presented iontronic bipolar memristors are versatile and can be easily integrated into small-scale iontronic circuits, thereby facilitating advanced neuromorphic computing functionalities.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    了解附着在气体析出电极上的表面微/纳米气泡的稳定性机理对于提高水电解效率至关重要。已知电极上的气泡覆盖阻碍了这一点。利用分子模拟,研究了单个电解纳米气泡在润湿性图案化纳米电极上的扩散控制演化。这些纳米电极以疏水岛作为优先成核位点,并允许纳米气泡以钉扎模式生长。在这些模拟中,发现了区分稳定纳米气泡和不稳定纳米气泡的阈值电流密度。当电流密度保持低于阈值时,成核的纳米气泡生长到它们的平衡态,保持它们的纳米级尺寸。然而,对于高于阈值的电流密度,纳米气泡经历无限的生长,并可能最终分离,由于浮力。增加纳米气泡的钉扎长度增加了纳米气泡不稳定性的程度。通过将电流密度与局部气体过饱和联系起来,表面纳米气泡稳定性理论的扩展[Lohse和Zhang,Phys.Rev.E91,031003(R)(2015)]准确地预测了分子模拟中发现的纳米气泡行为,包括平衡接触角和阈值电流密度。对于无法进行分子模拟的较大系统,用有限差分法结合浸没边界法进行了连续数值模拟,再次证明了数字和理论之间的良好一致性。
    Understanding the stability mechanism of surface micro/nanobubbles adhered to gas-evolving electrodes is essential for improving the efficiency of water electrolysis, which is known to be hindered by the bubble coverage on electrodes. Using molecular simulations, the diffusion-controlled evolution of single electrolytic nanobubbles on wettability-patterned nanoelectrodes is investigated. These nanoelectrodes feature hydrophobic islands as preferential nucleation sites and allow the growth of nanobubbles in the pinning mode. In these simulations, a threshold current density distinguishing stable nanobubbles from unstable nanobubbles is found. When the current density remains below the threshold value, nucleated nanobubbles grow to their equilibrium states, maintaining their nanoscopic size. However, for the current density above the threshold value, nanobubbles undergo unlimited growth and can eventually detach due to buoyancy. Increasing the pinning length of nanobubbles increases the degree of nanobubble instability. By connecting the current density with the local gas oversaturation, an extension of the stability theory for surface nanobubbles [Lohse and Zhang, Phys. Rev. E 91, 031003(R) (2015)] accurately predicts the nanobubble behavior found in molecular simulations, including equilibrium contact angles and the threshold current density. For larger systems that are not accessible to molecular simulations, continuum numerical simulations with the finite difference method combined with the immersed boundary method are performed, again demonstrating good agreement between numerics and theories.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    大脑卓越而高效的信息处理能力正在推动研究大脑启发(神经形态)计算范式。人工水离子通道正在成为一个令人兴奋的神经形态计算平台,通过直接模拟大脑的流体离子传输,表示与传统固态设备的偏离。在定量理论模型的支持下,我们提出了易于制造的锥形微通道,该通道在胶体结构之间嵌入了流体纳米通道的导电网络。由于瞬态盐浓度极化,我们的设备是易失忆阻器(记忆电阻),非常稳定。电压驱动的净盐通量和累积,支持浓度极化,令人惊讶地结合到内存保留时间对通道长度的扩散式二次依赖性中,允许特定时间尺度的通道设计。我们将设备实现为神经形态储层计算的突触元件。各个频道区分各种时间序列,一起代表(手写)数字,使用简单的读出功能进行后续的计算机模拟分类。我们的结果代表了朝着实现流体离子通道作为模拟大脑丰富的水性动力学的平台的前景迈出的重要一步。
    The brain\'s remarkable and efficient information processing capability is driving research into brain-inspired (neuromorphic) computing paradigms. Artificial aqueous ion channels are emerging as an exciting platform for neuromorphic computing, representing a departure from conventional solid-state devices by directly mimicking the brain\'s fluidic ion transport. Supported by a quantitative theoretical model, we present easy-to-fabricate tapered microchannels that embed a conducting network of fluidic nanochannels between a colloidal structure. Due to transient salt concentration polarization, our devices are volatile memristors (memory resistors) that are remarkably stable. The voltage-driven net salt flux and accumulation, that underpin the concentration polarization, surprisingly combine into a diffusionlike quadratic dependence of the memory retention time on the channel length, allowing channel design for a specific timescale. We implement our device as a synaptic element for neuromorphic reservoir computing. Individual channels distinguish various time series, that together represent (handwritten) numbers, for subsequent in silico classification with a simple readout function. Our results represent a significant step toward realizing the promise of fluidic ion channels as a platform to emulate the rich aqueous dynamics of the brain.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    忆阻器是神经形态计算的构建块。我们报告了一种基于聚合物纳米孔上弹性应变原理的新型纳米流体忆阻器。纳米粒子被吸收在单个锥形聚合物纳米孔的壁上,我们发现在0.01-0.1Hz的扫描频率范围内电流的收缩磁滞,切换到0.01Hz以下的二极管和0.1Hz以上的电阻。我们将电流滞后归因于纳米孔尖端侧的弹性应变,由吸附在内壁表面的颗粒上的电力引起。我们的模拟和分析方程与实验结果吻合良好,具有用于预测系统过渡的相图。我们证明了我们的纳米流体忆阻器的可塑性类似于生物突触。我们的发现为使用纳米流体忆阻器进行离子神经形态计算铺平了一条新途径。
    The memristor is the building block of neuromorphic computing. We report a new type of nanofluidic memristor based on the principle of elastic strain on polymer nanopores. With nanoparticles absorbed at the wall of a single conical polymer nanopore, we find a pinched hysteresis of the current within a scanning frequency range of 0.01-0.1 Hz, switching to a diode below 0.01 Hz and a resistor above 0.1 Hz. We attribute the current hysteresis to the elastic strain at the tip side of the nanopore, caused by electrical force on the particles adsorbed at the inner wall surface. Our simulation and analytical equations match well with experimental results, with a phase diagram for predicting the system transitions. We demonstrate the plasticity of our nanofluidic memristor to be similar to a biological synapse. Our findings pave a new way for ionic neuromorphic computing using nanofluidic memristors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    流体力显微镜(FluidFM)通过使用具有嵌入式流体通道的微制造悬臂,将原子力显微镜的力灵敏度与微流体的操作能力融合在一起。这一创新开创了生物学新的研发方向,生物物理学,和材料科学。为了获得可靠和可重复的数据,力传感器的校准至关重要。重要的是,中空FluidFM悬臂在矩形梁内包含一排平行柱。内部结构悬臂的精确弹簧常数校准远非微不足道,和现有的方法通常假设简化不适用于这些特殊类型的悬臂。此外,Sader方法,目前由FluidFM社区实施,依赖于品质因数的精确测量,这使得弹簧常数的校准对噪声敏感。在这项研究中,这些特殊类型的空心悬臂的水动力功能是用不同的仪器通过实验确定的。基于水动力函数,采用了一种新的弹簧常数校准方法,只依赖于悬臂的两个共振频率,在空气和液体中测量。基于这些结果,我们提出的方法可以成功地用于可靠的,中空流体FM悬臂的无噪声校准。
    Fluidic force microscopy (FluidFM) fuses the force sensitivity of atomic force microscopy with the manipulation capabilities of microfluidics by using microfabricated cantilevers with embedded fluidic channels. This innovation initiated new research and development directions in biology, biophysics, and material science. To acquire reliable and reproducible data, the calibration of the force sensor is crucial. Importantly, the hollow FluidFM cantilevers contain a row of parallel pillars inside a rectangular beam. The precise spring constant calibration of the internally structured cantilever is far from trivial, and existing methods generally assume simplifications that are not applicable to these special types of cantilevers. In addition, the Sader method, which is currently implemented by the FluidFM community, relies on the precise measurement of the quality factor, which renders the calibration of the spring constant sensitive to noise. In this study, the hydrodynamic function of these special types of hollow cantilevers was experimentally determined with different instruments. Based on the hydrodynamic function, a novel spring constant calibration method was adapted, which relied only on the two resonance frequencies of the cantilever, measured in air and in a liquid. Based on these results, our proposed method can be successfully used for the reliable, noise-free calibration of hollow FluidFM cantilevers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    由于纳米流体在许多领域的大量应用,它具有非常有希望的未来。它仍然存在,然而,很难理解控制纳米通道中溶剂行为的基本物理化学原理。这里,使用经典力场分子动力学模拟研究了水和离子在碳纳米管中的传输。通过将一个单壁碳纳米管(均匀带电或不带电)与两个穿孔的石墨烯片相结合,我们模拟类似于实验的单纳米孔装置。石墨边缘界定了模拟单元中的水和离子的两个储存器,通过施加外部电场从所述两个储存器施加电压。通过分析电解质电导率的演变,对于不同浓度的基团官能团,研究了碳纳米管几何参数(半径和手性)以及碳纳米管入口与OH或COO-基团的功能化作用。
    Nanofluidics has a very promising future owing to its numerous applications in many domains. It remains, however, very difficult to understand the basic physico-chemical principles that control the behavior of solvents confined in nanometric channels. Here, water and ion transport in carbon nanotubes is investigated using classical force field molecular dynamics simulations. By combining one single walled carbon nanotube (uniformly charged or not) with two perforated graphene sheets, we mimic single nanopore devices similar to experimental ones. The graphitic edges delimit two reservoirs of water and ions in the simulation cell from which a voltage is imposed through the application of an external electric field. By analyzing the evolution of the electrolyte conductivity, the role of the carbon nanotube geometric parameters (radius and chirality) and of the functionalization of the carbon nanotube entrances with OH or COO- groups is investigated for different concentrations of group functions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    模拟高选择性生物离子通道的埃级动力学是一项具有挑战性的任务。最近关于埃尺度人工通道的工作扩大了我们对离子传输和限制下吸收机制的理解。然而,化学环境在这种渠道中的作用仍未得到很好的理解。这里,我们报告了在大小约为5埃的基于MoS2的受限通道下离子的异常增强的传输和吸收。基于MoS2的通道中的离子吸收偏好可以通过选择表面官能团和离子吸收顺序来改变,这是由于动力学和热力学因素之间的相互作用,这取决于离子在吸收之前是否混合。我们的工作提供了2D限制中离子传输的整体图景,并突出了该体系中的离子相互作用。
    Emulating angstrom-scale dynamics of the highly selective biological ion channels is a challenging task. Recent work on angstrom-scale artificial channels has expanded our understanding of ion transport and uptake mechanisms under confinement. However, the role of chemical environment in such channels is still not well understood. Here, we report the anomalously enhanced transport and uptake of ions under confined MoS2-based channels that are ~five angstroms in size. The ion uptake preference in the MoS2-based channels can be changed by the selection of surface functional groups and ion uptake sequence due to the interplay between kinetic and thermodynamic factors that depend on whether the ions are mixed or not prior to uptake. Our work offers a holistic picture of ion transport in 2D confinement and highlights ion interplay in this regime.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    对于血液肿瘤,免疫疗法仍然比实体瘤更有效。实体肿瘤免疫治疗的主要挑战之一是这些肿瘤产生的免疫抑制微环境,这限制了免疫效应细胞的细胞毒性能力(例如,细胞毒性T细胞和自然杀伤细胞)。这种微环境的特点是缺氧,营养饥饿,积累的废物,和酸性pH。肿瘤被劫持的细胞,如成纤维细胞,巨噬细胞,和T调节细胞,通过分泌抑制抗肿瘤免疫反应并导致免疫逃避的免疫抑制细胞因子,也有助于免疫细胞的这种不适宜的微环境。因此,人们对开发调节肿瘤微环境和减少肿瘤细胞免疫逃避的新药和细胞制剂非常感兴趣。微生理系统(MPS)是多功能工具,可以加速这些疗法的开发和评估,尽管展示MPS潜力的具体例子仍然很少。微技术的进步导致了用于概括肿瘤复杂性的复杂微流体装置的发展。由此产生的模型,也称为微生理系统(MPS),是用来破译驱动免疫细胞抗肿瘤细胞毒性的分子机制的多功能工具,免疫细胞耗尽,和免疫细胞排斥,并评估新的靶向免疫疗法。这里,我们回顾了现有的微生理学平台,以研究免疫肿瘤学应用,并讨论了该领域的挑战和机遇。
    Immunotherapy remains more effective for hematologic tumors than for solid tumors. One of the main challenges to immunotherapy of solid tumors is the immunosuppressive microenvironment these tumors generate, which limits the cytotoxic capabilities of immune effector cells (e.g., cytotoxic T and natural killer cells). This microenvironment is characterized by hypoxia, nutrient starvation, accumulated waste products, and acidic pH. Tumor-hijacked cells, such as fibroblasts, macrophages, and T regulatory cells, also contribute to this inhospitable microenvironment for immune cells by secreting immunosuppressive cytokines that suppress the antitumor immune response and lead to immune evasion. Thus, there is a strong interest in developing new drugs and cell formulations that modulate the tumor microenvironment and reduce tumor cell immune evasion. Microphysiological systems (MPSs) are versatile tools that may accelerate the development and evaluation of these therapies, although specific examples showcasing the potential of MPSs remain rare. Advances in microtechnologies have led to the development of sophisticated microfluidic devices used to recapitulate tumor complexity. The resulting models, also known as microphysiological systems (MPSs), are versatile tools with which to decipher the molecular mechanisms driving immune cell antitumor cytotoxicity, immune cell exhaustion, and immune cell exclusion and to evaluate new targeted immunotherapies. Here, we review existing microphysiological platforms to study immuno-oncological applications and discuss challenges and opportunities in the field.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号