Molecular motor

分子马达
  • 文章类型: Journal Article
    聚集诱导发射(AIE)通过简单调节分子聚集来实现可调的光致发光。沿着这条脉络的研究突飞猛进也为光响应人造分子机器提供了巨大的机会,这些机器将被充分探索以执行多功能功能。在这里,该研究报告了一种光驱动的Feringa型电机,当处于适当的聚合状态时,不仅证明了光激活的旋转运动,但发射光子具有良好的量子产率。还进行了半定量TD-DFT计算,以帮助理解电动机的竞争性光致发光和光异构化过程。细胞毒性试验表明,该电机具有良好的生物相容性,为其在生物环境中的应用奠定了坚实的基础。结果表明,聚集诱导的发射概念和光驱动的Feringa-motor的参与可以导致发现新型机动AIEgen,这将进一步刺激能够执行多功能的更先进的分子马达的兴起。
    Aggregation-induced emission (AIE)allows tunable photoluminescence via the simple regulation of molecular aggregation. The research spurt along this vein has also offered tremendous opportunities for light-responsive artificial molecular machines that are to be fully explored for performing versatile functions. Herein, the study reports a light-driven Feringa-type motor, when in the appropriate aggregation state, not only demonstrates the light-activated rotary motion but emits photons with good quantum yield. A semi-quantitative TD-DFT calculation is also conducted to aid the understanding of the competitive photoluminescence and photoisomerization processes of the motor. Cytotoxicity test shows this motor possesses good biocompatibility, laying a solid foundation for applying it in the bio-environment. The results demonstrated that the engagement of the aggregation-induced emission concept and light-driven Feringa-motor can lead to the discovery of the novel motorized AIEgen, which will further stimulate the rise of more advanced molecular motors capable of executing multi-functionalities.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    染色质重塑剂是作用于核小体的分子马达:它们沿着DNA移动它们或(分解)组装它们。尽管它们在细胞中发挥重要的调节功能-它们的失调可能有助于癌症的发展并导致细胞死亡-染色质重塑剂迄今为止在生物物理学界仅受到很少的关注。在这篇短文中,我们试图提出这类有趣的酶用不同的实验和理论方法获得的关键特征,从而为生物物理学家提供了简明的介绍,以进一步激发人们对其特性的兴趣。
    Chromatin remodelers are molecular motors that act on nucleosomes: they move them along DNA or (dis-)assemble them. Despite the fact that they perform essential regulatory functions in cells-their deregulation can contribute to the development of cancers and lead to cell death-chromatin remodelers have only received meager attention in the biophysics community so far. In this short text, we attempt to present the key features of this interesting class of enzymes obtained with different experimental and theoretical methods, thereby providing a concise introduction for biophysicists to further stimulate interest in their properties.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    有丝分裂着丝粒相关驱动蛋白(MCAK)运动蛋白是驱动蛋白-13家族的典型成员,可以从正端和负端解聚微管。MCAK电机的关键问题是它如何执行解聚酶活性。为了解决这个问题,这里介绍了MCAK电机在微管上移动并解聚微管的途径。在路径的基础上,从理论上研究了野生型和突变型MCAK电机的动力学,其中包括全长MCAK,在运动结构域的α4螺旋中具有突变的全长MCAK,颈部中和的突变体全长MCAK,单体MCAK和具有中和颈部的突变型单体MCAK。研究表明,单个二聚体MCAK马达可以以渐进的方式解聚微管,每次去除一个微管蛋白或两个微管蛋白。理论结果与可用的实验数据一致。此外,提供了预测结果。
    Mitotic centromere-associated kinesin (MCAK) motor protein is a typical member of the kinesin-13 family, which can depolymerize microtubules from both plus and minus ends. A critical issue for the MCAK motor is how it performs the depolymerase activity. To address the issue, the pathway of the MCAK motor moving on microtubules and depolymerizing the microtubules is presented here. On the basis of the pathway, the dynamics of both the wild-type and mutant MCAK motors is studied theoretically, which include the full-length MCAK, the full-length MCAK with mutations in the α4-helix of the motor domain, the mutant full-length MCAK with a neutralized neck, the monomeric MCAK and the mutant monomeric MCAK with a neutralized neck. The studies show that a single dimeric MCAK motor can depolymerize microtubules in a processive manner, with either one tubulin or two tubulins being removed per times. The theoretical results are in agreement with the available experimental data. Moreover, predicted results are provided.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    神经性疼痛是一种常见的间歇性慢性疼痛,影响了全球约7-10%的人口。然而,目前的临床给药方法,如注射和口服给药,主要是一次性管理,不能实现疼痛程度和药物剂量的精确控制。在这里,我们开发了近红外(NIR)光响应微针贴片(MNPs),以根据发作状态时空控制释放的药物剂量,以治疗神经性疼痛。作用机制利用上转换纳米颗粒将NIR光转换为可见光和紫外光。这种转换触发了中孔材料中偶氮苯分子马达的快速旋转,能够按需控制药物剂量的释放。此外,MNs用于以微创和无痛的方式克服角质层的屏障,有效促进药物分子的透皮渗透。这些贴剂的有效性已经通过显著的结果得到证明。在连续五个周期暴露于NIR光后,每个周期持续30秒,贴剂实现了318μg药物的精确释放。在老鼠模型中,在一个周期的NIR光照射1小时内观察到最大的疼痛缓解,效果持续6小时。对于随后的疼痛发作,在相似的光照下保持相同的精确治疗效果。NIR控制的药物精确释放的MNPs为间歇性神经性疼痛的治疗提供了新的范例。
    Neuropathic pain is a prevalent form of intermittent chronic pain, affecting approximately 7-10% of the global population. However, the current clinical administration methods, such as injection and oral administration, are mostly one-time administration, which cannot achieve accurate control of pain degree and drug dose. Herein, we developed near-infrared (NIR) light-responsive microneedle patches (MNPs) to spatiotemporally control the drug dose released to treat neuropathic pain according to the onset state. The mechanism of action utilizes upconversion nanoparticles to convert NIR light into visible and ultraviolet light. This conversion triggers the rapid rotation of the azobenzene molecular motor in the mesoporous material, enabling the on-demand controlled release of a drug dose. Additionally, MNs are used to overcome the barrier of the stratum corneum in a minimally invasive and painless manner, effectively promoting the transdermal penetration of drug molecules. The effectiveness of these patches has been demonstrated through significant results. Upon exposure to NIR light for five consecutive cycles, with each cycle lasting 30 s, the patches achieved a precise release of 318 μg of medication. In a mouse model, maximum pain relief was observed within 1 h of one cycle of NIR light exposure, with the effects lasting up to 6 h. The same level of precise treatment efficacy was maintained for subsequent pain episodes with similar light exposure. The NIR-controlled drugs precision-released MNPs provide a novel paradigm for the treatment of intermittent neuropathic pain.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    天然驱动蛋白马达通过短的C端或N端接头拴在货物上,其与核心电机域的对接会产生定向力。目前尚不清楚链接器对接是否是唯一贡献定向力的过程,或者链接器对接是否耦合并放大底层,驱动蛋白运动域的更基本的力产生机械循环。这里,我们表明,通过连接到表面环的双链DNA(dsDNA)连接的驱动蛋白运动结构域驱动强大的微管(MT)滑动。使用连接至表面环的dsDNA的系链断开C末端颈部接头和N末端覆盖链,使得它们的对接-分离循环不能施加力。dsDNA系链最有效的连接位置是环2或环10,它们最接近MT的正端和负端,分别。在三种情况下,我们观察到负向运动。我们的研究结果表明,潜在的古老,驱动蛋白运动域的力产生核心机械作用,它驱动着,并被放大,链接器对接。
    Natural kinesin motors are tethered to their cargoes via short C-terminal or N-terminal linkers, whose docking against the core motor domain generates directional force. It remains unclear whether linker docking is the only process contributing directional force or whether linker docking is coupled to and amplifies an underlying, more fundamental force-generating mechanical cycle of the kinesin motor domain. Here, we show that kinesin motor domains tethered via double-stranded DNAs (dsDNAs) attached to surface loops drive robust microtubule (MT) gliding. Tethering using dsDNA attached to surface loops disconnects the C-terminal neck-linker and the N-terminal cover strand so that their dock-undock cycle cannot exert force. The most effective attachment positions for the dsDNA tether are loop 2 or loop 10, which lie closest to the MT plus and minus ends, respectively. In three cases, we observed minus-end-directed motility. Our findings demonstrate an underlying, potentially ancient, force-generating core mechanical action of the kinesin motor domain, which drives, and is amplified by, linker docking.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    二聚体驱动蛋白-8马达具有从正端解聚微管(MT)的生物学功能。然而,kinesin-8电机促进解聚的分子机制仍不确定。这里,提出了用kinesin-8电机进行MT解聚的模型。基于模型,从理论上研究了在空载和电动机负载下,在MT加端存在单个电动机的情况下的解聚动力学。还分析了在MT加端存在多个电机的情况下的解聚动力学。理论结果很好地解释了可用的实验数据。这些研究也可以适用于其他家族的驱动蛋白马达,例如驱动蛋白-13有丝分裂着丝粒相关的驱动蛋白马达,它们具有解聚MT的能力。
    The dimeric kinesin-8 motors have the biological function of depolymerizing microtubules (MTs) from the plus end. However, the molecular mechanism of the depolymerization promoted by the kinesin-8 motors is still undetermined. Here, a model is proposed for the MT depolymerization by the kinesin-8 motors. Based on the model, the dynamics of depolymerization in the presence of the single motor at the MT plus end under no load and under load on the motor is studied theoretically. The dynamics of depolymerization in the presence of multiple motors at the MT plus end is also analyzed. The theoretical results explain well the available experimental data. The studies can also be applicable to other families of kinesin motors such as kinesin-13 mitotic centromere-associated kinesin motors that have the ability to depolymerize MTs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Editorial
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    分子马达的肌球蛋白超家族的成员是大型机械化学ATP酶,它们与不断扩展的细胞功能有关。这篇综述集中在哺乳动物非肌肉肌球蛋白-2(NM2)旁系同源物,肌球蛋白-2家族的细丝形成马达的普遍存在的成员。通过化学能转化为机械功,NM2旁系同源物重塑并塑造细胞和组织。此过程在时间和空间上受到许多协同调节机制的严格控制,以满足细胞需求。我们回顾了结构生物学的最新进展以及优雅的生物物理和细胞生物学方法如何有助于我们对NM2旁系同源物的共同和独特机制的理解,因为它们与它们的动力学有关。regulation,装配,和细胞功能。
    Members of the myosin superfamily of molecular motors are large mechanochemical ATPases that are implicated in an ever-expanding array of cellular functions. This review focuses on mammalian nonmuscle myosin-2 (NM2) paralogs, ubiquitous members of the myosin-2 family of filament-forming motors. Through the conversion of chemical energy into mechanical work, NM2 paralogs remodel and shape cells and tissues. This process is tightly controlled in time and space by numerous synergetic regulation mechanisms to meet cellular demands. We review how recent advances in structural biology together with elegant biophysical and cell biological approaches have contributed to our understanding of the shared and unique mechanisms of NM2 paralogs as they relate to their kinetics, regulation, assembly, and cellular function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    分子马达两亲物已经被广泛尝试用于多个长度尺度的动态纳米系统,以开发小型功能材料。包括控制宏观泡沫性能,作为人造分子肌肉放大运动,并作为模拟细胞支架的细胞外基质。然而,bola型分子马达两亲物的限制性例子被认为用于构建宏观生物材料。在这里,我们提出了我们设计的两种第二代分子马达两亲物,马达Bola-两栖动物(MBA)。除了在有机和水性介质中实现的MBAs的光诱导电机旋转之外,热螺旋反转步骤的恢复速率可以通过具有不同空间位阻的转子部分来控制。在(低温)透射电子显微镜下观察到MBAs的动态组装结构。这种动态性有助于MBAs通过应用剪切流方法进一步组装为宏观软支架。光照射后,观察到MBA支架的光致弯曲功能,在宏观长度尺度上证明了分子运动放大为宏观向光弯曲功能。由于MBAs被证实具有低细胞毒性,人骨髓间充质干细胞可以在MBA支架表面生长。这些结果清楚地证明了设计用于开发光响应动态功能材料以创建新一代软机器人系统和细胞-材料界面的MBA的概念。本文受版权保护。保留所有权利。
    Molecular motor amphiphiles have already been widely attempted for dynamic nanosystems across multiple length-scale for developments of small functional materials, including controlling macroscopic foam properties, amplifying motion as artificial molecular muscles, and serving as extracellular matrix mimicking cell scaffolds. However, limiting examples of bola-type molecular motor amphiphiles are considered for constructing macroscopic biomaterials. Herein, this work presents the designed two second generation molecular motor amphiphiles, motor bola-amphiphiles (MBAs). Aside from the photoinduced motor rotation of MBAs achieved in both organic and aqueous media, the rate of recovering thermal helix inversion step can be controlled by the rotor part with different steric hindrances. Dynamic assembled structures of MBAs are observed under (cryo)-transmission electron microscopy (TEM). This dynamicity assists MBAs in further assembling as macroscopic soft scaffolds by applying a shear-flow method. Upon photoirradiation, the phototropic bending function of MBA scaffolds is observed, demonstrating the amplification of molecular motion into macroscopic phototropic bending functions at the macroscopic length-scale. Since MBAs are confirmed with low cytotoxicity, human bone marrow-derived mesenchymal stem cells (hBM-MSCs) can grow on the surface of MBA scaffolds. These results clearly demonstrate the concept of designing MBAs for developing photoresponsive dynamic functional materials to create new-generation soft robotic systems and cell-material interfaces.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Kinesin-14s,驱动蛋白运动蛋白超家族的一个亚家族,在有丝分裂和减数分裂过程中主要作用于纺锤体的组装和维持。来自构巢曲霉的KlpA和来自肠贾第鞭毛虫的GiKIN14a是两种类型的驱动蛋白14。现有的实验结果令人费解地表明,尽管KlpA在微管滑翔设置中优先向负端移动,而在平行的微管重叠中,它优先向单个微管上的加端移动。更令人费解的是,在颈柄的中心区域中插入额外的多肽接头将KlpA在单个微管上的运动性方向转换为负端。先前的实验结果表明,GiKIN14a以无尾或全长形式优先向单个微管的负端移动。尾巴不仅大大提高了GiKIN14a的持续合成能力,而且加速了ATPase的速率和速度。在颈柄的中心区域中插入额外的多肽接头降低了GiKIN14a的ATPase率。然而,KlpA和GiKIN14a这些令人费解的动力学特征的潜在机制尚不清楚。这里,为了理解这种机制,在提出的模型的基础上,对KlpA和GiKIN14a的动力学进行了理论研究,结合驱动蛋白头和微管之间的潜在变化,以及尾巴和微管之间的电势。理论结果定量解释了可用的实验结果并提供了预测结果。发现颈柄的弹性决定了KlpA在单个微管上的方向性,并影响了单个微管上GiKIN14a的ATPase速率和速度。
    Kinesin-14s, a subfamily of the large superfamily of kinesin motor proteins, function mainly in spindle assembly and maintenance during mitosis and meiosis. KlpA from Aspergillus nidulans and GiKIN14a from Giardia intestinalis are two types of kinesin-14s. Available experimental results puzzlingly showed that while KlpA moves preferentially toward the minus end in microtubule-gliding setups and inside parallel microtubule overlaps, it moves preferentially toward the plus end on single microtubules. More puzzlingly, the insertion of an extra polypeptide linker in the central region of the neck stalk switches the motility direction of KlpA on single microtubules to the minus end. Prior experimental results showed that GiKIN14a moves preferentially toward the minus end on single microtubules in either tailless or full-length forms. The tail not only greatly enhances the processivity but also accelerates the ATPase rate and velocity of GiKIN14a. The insertion of an extra polypeptide linker in the central region of the neck stalk reduces the ATPase rate of GiKIN14a. However, the underlying mechanism of these puzzling dynamical features for KlpA and GiKIN14a is unclear. Here, to understand this mechanism, the dynamics of KlpA and GiKIN14a were studied theoretically on the basis of the proposed model, incorporating potential changes between the kinesin head and microtubule, as well as the potential between the tail and microtubule. The theoretical results quantitatively explain the available experimental results and provide predicted results. It was found that the elasticity of the neck stalk determines the directionality of KlpA on single microtubules and affects the ATPase rate and velocity of GiKIN14a on single microtubules.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号