MDSCs, myeloid-derived suppressor cells

  • 文章类型: Journal Article
    髓源性抑制细胞(MDSCs),积聚在肿瘤携带者身上,已知抑制抗肿瘤免疫并因此促进肿瘤进展。MDSC被认为是癌症患者对免疫检查点抑制剂产生耐药性的主要原因。因此,MDSCs是癌症免疫治疗的潜在靶标。在这项研究中,我们修改了MDSC分化的体外方法。在体外用粒细胞-巨噬细胞集落刺激因子刺激骨髓(BM)细胞时,我们获得了淋巴细胞抗原6G阳性(Ly-6G)和阴性(Ly-6G-)MDSCs(统称,以下称为常规MDSCs),非免疫抑制和免疫抑制,分别。然后我们发现从Ly-6G-BM(以下称为6G-BM-MDSC)分化的MDSCs比常规MDSCs更强烈地抑制T细胞增殖。而从Ly-6GBM(以下称为6GBM-MDSC)分化的细胞是非免疫抑制性的。与此相符,常规MDSCs或6G-BM-MDSC,但不是6G+BM-MDSC,促进荷瘤小鼠的肿瘤进展。此外,我们发现活化的谷胱甘肽代谢是6G-BM-MDSC免疫抑制能力增强的原因。最后,我们表明,6G-BM-MDSC中的Ly-6G+细胞,表现出微弱的免疫抑制,表达更高水平的CybbmRNA,MDSCs的免疫抑制基因,比6G+BM-MDSC。一起,这些数据表明,Ly-6G+细胞从BM细胞的消耗导致免疫抑制性Ly-6G+MDSC的分化.总之,我们提出了一种更好的MDSC体外分化方法。此外,我们的研究结果有助于了解MDSC亚群,并为进一步研究MDSCs提供基础。
    Myeloid-derived suppressor cells (MDSCs), which accumulate in tumor bearers, are known to suppress anti-tumor immunity and thus promote tumor progression. MDSCs are considered a major cause of resistance against immune checkpoint inhibitors in patients with cancer. Therefore, MDSCs are potential targets in cancer immunotherapy. In this study, we modified an in vitro method of MDSC differentiation. Upon stimulating bone marrow (BM) cells with granulocyte-macrophage colony-stimulating factor in vitro, we obtained both lymphocyte antigen 6G positive (Ly-6G+) and negative (Ly-6G-) MDSCs (collectively, hereafter referred to as conventional MDSCs), which were non-immunosuppressive and immunosuppressive, respectively. We then found that MDSCs differentiated from Ly-6G- BM (hereafter called 6G- BM-MDSC) suppressed T-cell proliferation more strongly than conventional MDSCs, whereas the cells differentiated from Ly-6G+ BM (hereafter called 6G+ BM-MDSC) were non-immunosuppressive. In line with this, conventional MDSCs or 6G- BM-MDSC, but not 6G+ BM-MDSC, promoted tumor progression in tumor-bearing mice. Moreover, we identified that activated glutathione metabolism was responsible for the enhanced immunosuppressive ability of 6G- BM-MDSC. Finally, we showed that Ly-6G+ cells in 6G- BM-MDSC, which exhibited weak immunosuppression, expressed higher levels of Cybb mRNA, an immunosuppressive gene of MDSCs, than 6G+ BM-MDSC. Together, these data suggest that the depletion of Ly-6G+ cells from the BM cells leads to differentiation of immunosuppressive Ly-6G+ MDSCs. In summary, we propose a better method for MDSC differentiation in vitro. Moreover, our findings contribute to the understanding of MDSC subpopulations and provide a basis for further research on MDSCs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肿瘤免疫治疗已成为新一代抗肿瘤治疗,但是它的适应症仍然集中在对免疫系统敏感的几种类型的肿瘤上。因此,扩大适应证、提高疗效的有效策略成为肿瘤免疫治疗进一步发展的关键要素。据报道,天然产物对癌症免疫疗法有这种作用,包括癌症疫苗,免疫检查点抑制剂,和过继免疫细胞疗法。其机制主要归因于肿瘤免疫抑制微环境的重塑,是帮助肿瘤避免免疫系统和癌症免疫疗法识别和攻击的关键因素。因此,这篇综述总结并总结了据报道可改善癌症免疫治疗的天然产物,并研究了其机制。我们发现皂苷,多糖,黄酮类化合物主要是三类天然产物,这反映了通过逆转肿瘤免疫抑制微环境与癌症免疫治疗相结合的显着效果。此外,这篇综述还收集了有关纳米技术用于改善天然产物缺点的研究。所有这些研究都显示了天然产物在癌症免疫疗法中的巨大潜力。
    Cancer immunotherapy has become a new generation of anti-tumor treatment, but its indications still focus on several types of tumors that are sensitive to the immune system. Therefore, effective strategies that can expand its indications and enhance its efficiency become the key element for the further development of cancer immunotherapy. Natural products are reported to have this effect on cancer immunotherapy, including cancer vaccines, immune-check points inhibitors, and adoptive immune-cells therapy. And the mechanism of that is mainly attributed to the remodeling of the tumor-immunosuppressive microenvironment, which is the key factor that assists tumor to avoid the recognition and attack from immune system and cancer immunotherapy. Therefore, this review summarizes and concludes the natural products that reportedly improve cancer immunotherapy and investigates the mechanism. And we found that saponins, polysaccharides, and flavonoids are mainly three categories of natural products, which reflected significant effects combined with cancer immunotherapy through reversing the tumor-immunosuppressive microenvironment. Besides, this review also collected the studies about nano-technology used to improve the disadvantages of natural products. All of these studies showed the great potential of natural products in cancer immunotherapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    程序性细胞死亡配体1(PD-L1)/程序性细胞死亡蛋白1(PD-1)级联是免疫检查点阻断(ICB)疗法的有效治疗靶标。通过小分子药物靶向PD-L1/PD-1轴是增强抗肿瘤免疫力的有吸引力的方法。使用基于流式细胞术的测定法,我们确定土贝莫苷-1(TBM-1)是一种有前景的抗肿瘤免疫调节剂,可以负调节PD-L1水平.TBM-1破坏PD-1/PD-L1相互作用并通过降低PD-L1的丰度增强T细胞对癌细胞的细胞毒性。此外,TBM-1通过激活肿瘤浸润性T细胞免疫在患有Lewis肺癌(LLC)和B16黑色素瘤肿瘤异种移植物的小鼠中发挥其抗肿瘤作用。机械上,TBM-1在TFEB依赖性中触发PD-L1溶酶体降解,自噬非依赖性途径。TBM-1选择性结合哺乳动物雷帕霉素靶(mTOR)激酶并抑制mTORC1的激活,导致TFEB的核易位和溶酶体生物发生。此外,TBM-1和抗CTLA-4的组合可有效增强抗肿瘤T细胞免疫,并减少髓源性抑制细胞(MDSC)和调节性T(Treg)细胞的免疫抑制浸润。我们的发现揭示了TBM-1以前未被识别的抗肿瘤机制,并代表了一种替代的ICB治疗策略,以增强癌症免疫疗法的功效。
    Programmed cell death ligand 1 (PD-L1)/programmed cell death protein 1 (PD-1) cascade is an effective therapeutic target for immune checkpoint blockade (ICB) therapy. Targeting PD-L1/PD-1 axis by small-molecule drug is an attractive approach to enhance antitumor immunity. Using flow cytometry-based assay, we identify tubeimoside-1 (TBM-1) as a promising antitumor immune modulator that negatively regulates PD-L1 level. TBM-1 disrupts PD-1/PD-L1 interaction and enhances the cytotoxicity of T cells toward cancer cells through decreasing the abundance of PD-L1. Furthermore, TBM-1 exerts its antitumor effect in mice bearing Lewis lung carcinoma (LLC) and B16 melanoma tumor xenograft via activating tumor-infiltrating T-cell immunity. Mechanistically, TBM-1 triggers PD-L1 lysosomal degradation in a TFEB-dependent, autophagy-independent pathway. TBM-1 selectively binds to the mammalian target of rapamycin (mTOR) kinase and suppresses the activation of mTORC1, leading to the nuclear translocation of TFEB and lysosome biogenesis. Moreover, the combination of TBM-1 and anti-CTLA-4 effectively enhances antitumor T-cell immunity and reduces immunosuppressive infiltration of myeloid-derived suppressor cells (MDSCs) and regulatory T (Treg) cells. Our findings reveal a previously unrecognized antitumor mechanism of TBM-1 and represent an alternative ICB therapeutic strategy to enhance the efficacy of cancer immunotherapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    外泌体是细胞衍生的纳米囊泡,直径为30至150nm,多囊泡体与细胞表面融合后释放。它们可以运输核酸,蛋白质,和脂质用于细胞间通讯并激活靶细胞中的信号通路。在癌症中,外泌体可能通过调节免疫反应参与肿瘤的生长和转移,阻断上皮-间质转化,促进血管生成。它们还参与对化疗药物的抗性的发展。液体活检中的外泌体可用作非侵入性生物标志物,用于癌症的早期检测和诊断。由于它们的两亲结构,外泌体是用于癌症治疗的天然药物递送载体。
    Exosomes are cell-derived nanovesicles with diameters from 30 to 150 nm, released upon fusion of multivesicular bodies with the cell surface. They can transport nucleic acids, proteins, and lipids for intercellular communication and activate signaling pathways in target cells. In cancers, exosomes may participate in growth and metastasis of tumors by regulating the immune response, blocking the epithelial-mesenchymal transition, and promoting angiogenesis. They are also involved in the development of resistance to chemotherapeutic drugs. Exosomes in liquid biopsies can be used as non-invasive biomarkers for early detection and diagnosis of cancers. Because of their amphipathic structure, exosomes are natural drug delivery vehicles for cancer therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    微小RNA(miRNA)失调通过调节mRNA水平在前列腺癌(PCa)的异质性发展中起关键作用。在这里,我们旨在通过非负矩阵分解对miRNA调节的转录组进行聚类来表征PCa的分子特征。使用来自癌症基因组图谱的478个PCa样本,四种分子亚型(S-I,S-II,S-III,和S-IV)在两个合并的微阵列和RNAseq数据集中的656和252个样本中进行了鉴定和验证,分别。有趣的是,4种亚型在综合分析临床特征后表现出明显的临床和生物学特征,多维配置文件,免疫浸润,和药物敏感性。S-I是基底/干/间充质样的,免疫排除有明显的转化生长因子β,上皮-间质转化和缺氧信号,增加对奥拉帕尼的敏感性,和中间预后。S-II具有腔/代谢活性,对雄激素剥夺治疗有反应,经常进行TMPRSS2-ERG融合,预后良好。S-III的特征是适度的增殖和代谢活性,对基于紫杉烷的化疗的敏感性,和中间预后。S-IV具有高度增生性,具有中等EMT和干性,频繁删除TP53、PTEN和RB,和最差的预后;它也是免疫发炎和敏感的抗PD-L1治疗。总的来说,基于miRNA调节的基因谱,这项研究确定了4种不同的PCa亚型,这些亚型可以改善诊断时的风险分层并提供治疗指导.
    MicroRNA (miRNA) deregulation plays a critical role in the heterogeneous development of prostate cancer (PCa) by tuning mRNA levels. Herein, we aimed to characterize the molecular features of PCa by clustering the miRNA-regulated transcriptome with non-negative matrix factorization. Using 478 PCa samples from The Cancer Genome Atlas, four molecular subtypes (S-I, S-II, S-III, and S-IV) were identified and validated in two merged microarray and RNAseq datasets with 656 and 252 samples, respectively. Interestingly, the four subtypes showed distinct clinical and biological features after comprehensive analyses of clinical features, multiomic profiles, immune infiltration, and drug sensitivity. S-I is basal/stem/mesenchymal-like and immune-excluded with marked transforming growth factor β, epithelial-mesenchymal transition and hypoxia signals, increased sensitivity to olaparib, and intermediate prognosis. S-II is luminal/metabolism-active and responsive to androgen deprivation therapy with frequent TMPRSS2-ERG fusion and a good prognosis. S-III is characterized by moderate proliferative and metabolic activity, sensitivity to taxane-based chemotherapy, and intermediate prognosis. S-IV is highly proliferative with moderate EMT and stemness, frequent deletions of TP53, PTEN and RB, and the poorest prognosis; it is also immune-inflamed and sensitive to anti-PD-L1 therapy. Overall, based on miRNA-regulated gene profiles, this study identified four distinct PCa subtypes that could improve risk stratification at diagnosis and provide therapeutic guidance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Hedgehog(HH)信号通路在胃肠道癌变和胃肠道肿瘤微环境(TME)中起重要作用。异常的HH信号激活可能加速胃肠道肿瘤的生长,导致肿瘤免疫耐受和耐药。HH信号和TME之间的相互作用密切参与这些过程,例如,肿瘤生长,肿瘤免疫耐受,炎症,和抗药性。证据表明TME中的炎症因子,如白细胞介素6(IL-6)和干扰素-γ(IFN-γ),巨噬细胞,和T细胞依赖性免疫反应,通过影响HH信号通路在肿瘤生长中起着至关重要的作用。此外,抑制增殖的癌症相关成纤维细胞(CAFs)和炎症因子可以通过抑制HH信号使TME正常化。此外,HH信号的异常激活有利于肿瘤干细胞(CSC)的增殖和胃肠道肿瘤的耐药性。这篇综述讨论了目前对HH信号异常激活在胃肠道癌变中的作用和机制的认识。胃肠道TME,肿瘤免疫耐受和耐药性,突出了潜在的治疗机会。
    The Hedgehog (HH) signaling pathway plays important roles in gastrointestinal carcinogenesis and the gastrointestinal tumor microenvironment (TME). Aberrant HH signaling activation may accelerate the growth of gastrointestinal tumors and lead to tumor immune tolerance and drug resistance. The interaction between HH signaling and the TME is intimately involved in these processes, for example, tumor growth, tumor immune tolerance, inflammation, and drug resistance. Evidence indicates that inflammatory factors in the TME, such as interleukin 6 (IL-6) and interferon-γ (IFN-γ), macrophages, and T cell-dependent immune responses, play a vital role in tumor growth by affecting the HH signaling pathway. Moreover, inhibition of proliferating cancer-associated fibroblasts (CAFs) and inflammatory factors can normalize the TME by suppressing HH signaling. Furthermore, aberrant HH signaling activation is favorable to both the proliferation of cancer stem cells (CSCs) and the drug resistance of gastrointestinal tumors. This review discusses the current understanding of the role and mechanism of aberrant HH signaling activation in gastrointestinal carcinogenesis, the gastrointestinal TME, tumor immune tolerance and drug resistance and highlights the underlying therapeutic opportunities.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    The tumor development and metastasis are closely related to the structure and function of the tumor microenvironment (TME). Recently, TME modulation strategies have attracted much attention in cancer immunotherapy. Despite the preliminary success of immunotherapeutic agents, their therapeutic effects have been restricted by the limited retention time of drugs in TME. Compared with traditional delivery systems, nanoparticles with unique physical properties and elaborate design can efficiently penetrate TME and specifically deliver to the major components in TME. In this review, we briefly introduce the substitutes of TME including dendritic cells, macrophages, fibroblasts, tumor vasculature, tumor-draining lymph nodes and hypoxic state, then review various nanoparticles targeting these components and their applications in tumor therapy. In addition, nanoparticles could be combined with other therapies, including chemotherapy, radiotherapy, and photodynamic therapy, however, the nanoplatform delivery system may not be effective in all types of tumors due to the heterogeneity of different tumors and individuals. The changes of TME at various stages during tumor development are required to be further elucidated so that more individualized nanoplatforms could be designed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    程序性细胞死亡-1(PD-1)/程序性细胞死亡配体-1(PD-L1)阻断疗法已成为癌症免疫治疗的主要支柱。与抗体靶向相比,迫切需要具有良好药代动力学的小分子检查点抑制剂.在这里,我们确定了小檗碱(BBR),一种成熟的消炎药,作为一组中药(TCM)化学单体的PD-L1的负调节因子。BBR通过降低癌细胞中PD-L1的水平来增强肿瘤细胞对共培养T细胞的敏感性。此外,BBR通过增强肿瘤浸润性T细胞免疫和减弱免疫抑制性髓源性抑制细胞(MDSC)和调节性T细胞(Tregs)的激活,在Lewis肿瘤异种移植小鼠中发挥其抗肿瘤作用。BBR通过泛素(Ub)/蛋白酶体依赖性途径触发PD-L1降解。值得注意的是,BBR选择性结合组成型光形态发生-9信号体5(CSN5)的谷氨酸76,并通过其去泛素化活性抑制PD-1/PD-L1轴,导致PD-L1的泛素化和降解。我们的数据揭示了以前未被识别的BBR的抗肿瘤机制,提示BBR是用于癌症治疗的小分子免疫检查点抑制剂。
    Programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) blocking therapy has become a major pillar of cancer immunotherapy. Compared with antibodies targeting, small-molecule checkpoint inhibitors which have favorable pharmacokinetics are urgently needed. Here we identified berberine (BBR), a proven anti-inflammation drug, as a negative regulator of PD-L1 from a set of traditional Chinese medicine (TCM) chemical monomers. BBR enhanced the sensitivity of tumour cells to co-cultured T-cells by decreasing the level of PD-L1 in cancer cells. In addition, BBR exerted its antitumor effect in Lewis tumor xenograft mice through enhancing tumor-infiltrating T-cell immunity and attenuating the activation of immunosuppressive myeloid-derived suppressor cells (MDSCs) and regulatory T-cells (Tregs). BBR triggered PD-L1 degradation through ubiquitin (Ub)/proteasome-dependent pathway. Remarkably, BBR selectively bound to the glutamic acid 76 of constitutive photomorphogenic-9 signalosome 5 (CSN5) and inhibited PD-1/PD-L1 axis through its deubiquitination activity, resulting in ubiquitination and degradation of PD-L1. Our data reveals a previously unrecognized antitumor mechanism of BBR, suggesting BBR is small-molecule immune checkpoint inhibitor for cancer treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    在临床治疗中靶向程序性细胞死亡配体1(PD-L1)/程序性细胞死亡1(PD-1)途径的免疫治疗策略在治疗多种类型的癌症方面取得了显著成功。然而,由于肿瘤和个体免疫系统的异质性,PD-L1/PD-1阻断在控制许多患者的恶性肿瘤方面仍然显示出缓慢的反应率。越来越多的证据表明,抗PD-L1/抗PD-1治疗的有效反应需要建立一个完整的免疫周期。在免疫周期的任何步骤中的损伤是免疫疗法失败的最重要原因之一。免疫周期的损伤可以通过表观遗传修饰来恢复,包括重新编程肿瘤相关免疫的环境,通过增加肿瘤抗原的呈递来引发免疫反应,通过调节T细胞运输和再激活。因此,PD-L1/PD-1阻断和表观遗传药物的合理组合可能为免疫系统再训练和改善检查点阻断治疗的临床结局提供巨大潜力.
    Immunotherapy strategies targeting the programmed cell death ligand 1 (PD-L1)/programmed cell death 1 (PD-1) pathway in clinical treatments have achieved remarkable success in treating multiple types of cancer. However, owing to the heterogeneity of tumors and individual immune systems, PD-L1/PD-1 blockade still shows slow response rates in controlling malignancies in many patients. Accumulating evidence has shown that an effective response to anti-PD-L1/anti-PD-1 therapy requires establishing an integrated immune cycle. Damage in any step of the immune cycle is one of the most important causes of immunotherapy failure. Impairments in the immune cycle can be restored by epigenetic modification, including reprogramming the environment of tumor-associated immunity, eliciting an immune response by increasing the presentation of tumor antigens, and by regulating T cell trafficking and reactivation. Thus, a rational combination of PD-L1/PD-1 blockade and epigenetic agents may offer great potential to retrain the immune system and to improve clinical outcomes of checkpoint blockade therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    针对实体恶性肿瘤的抗肿瘤免疫应答与改善患者生存率相关。我们对上皮样恶性胸膜间皮瘤中肿瘤和肿瘤相关间质的免疫反应进行了全面研究,目的是表征肿瘤免疫微环境并确定预后免疫标志物。我们研究了肿瘤巢内和肿瘤相关基质内的8种肿瘤浸润免疫细胞,以及230例患者中5种细胞因子/趋化因子受体的肿瘤表达。根据单变量分析,高密度的肿瘤CD4-和CD20表达淋巴细胞与更好的结局相关.肿瘤白细胞介素-7(IL-7)受体的高表达与不良预后相关。根据多变量分析,分期和肿瘤CD20检测与生存率独立相关.CD163+肿瘤相关巨噬细胞的单个免疫细胞浸润分析与存活无关。然而,免疫相关细胞组合分析发现:(1)高CD163+肿瘤相关巨噬细胞和低CD8+淋巴细胞浸润比其他组预后差;(2)低CD163+肿瘤相关巨噬细胞和高CD20+淋巴细胞浸润比其他组预后好.多因素分析显示CD163/CD8和CD163/CD20是影响患者生存的独立预后因素。随着最近对恶性胸膜间皮瘤患者的免疫治疗研究和临床试验的增加,我们观察到CD20+B淋巴细胞和肿瘤相关巨噬细胞是预后标志物,这为恶性胸膜间皮瘤的肿瘤微环境提供了重要信息.
    Antitumor immune responses against solid malignancies correlate with improved patient survival. We conducted a comprehensive investigation of immune responses in tumor and tumor-associated stroma in epithelioid malignant pleural mesothelioma with the goal of characterizing the tumor immune microenvironment and identifying prognostic immune markers. We investigated 8 types of tumor-infiltrating immune cells within the tumor nest and tumor-associated stroma, as well as tumor expression of 5 cytokine/chemokine receptors in 230 patients. According to univariate analyses, high densities of tumoral CD4- and CD20-expressing lymphocytes were associated with better outcomes. High expression of tumor interleukin-7 (IL-7) receptor was associated with worse outcomes. According to multivariate analyses, stage and tumoral CD20 detection were independently associated with survival. Analysis of single immune cell infiltration for CD163+ tumor-associated macrophages did not correlate with survival. However, analysis of immunologically relevant cell combinations identified that: (1) high CD163+ tumor-associated macrophages and low CD8+ lymphocyte infiltration had worse prognosis than other groups and (2) low CD163+ tumor associated macrophages and high CD20+ lymphocyte infiltration had better prognosis than other groups. Multivariate analyses demonstrated that CD163/CD8 and CD163/CD20 were independent prognostic factors of survival. With a recent increase in immunotherapy investigations and clinical trials for malignant pleural mesothelioma patients, our observations that CD20+ B lymphocytes and tumor-associated macrophages are prognostic markers provide important information about the tumor microenvironment of malignant pleural mesothelioma.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号