LPS, lipopolysaccharide

LPS,脂多糖
  • 文章类型: Journal Article
    尽管存在关于肝再生过程的大量实验证据,在人类中,验证在很大程度上是缺失的。然而,肝脏再生受到潜在肝脏疾病的严重影响。在这个项目中,我们旨在系统地评估人类肝脏再生过程中的早期转录变化,并进一步评估这些过程在肝脏再生障碍患者中的差异。
    收集154例患者的血液样本和46例接受肝切除术的患者的术中组织样本,并根据术后肝再生功能障碍进行分类。其中,一个由21例患者组成的配对队列被用于RNA测序.评估样本的循环细胞因子,基因表达动力学,肝内中性粒细胞积累,和空间转录组学。
    具有功能失调的肝脏再生的个体表现出随着更高的细胞内粘附分子-1诱导而加重的转录炎症反应。这种关键的白细胞粘附分子的诱导增加与肝再生功能失调的个体在诱导肝再生时增加的肝内中性粒细胞积累和激活有关。比较有和没有功能失调的肝再生个体的基线基因表达谱,我们发现双特异性磷酸酶4(DUSP4)表达,一种已知的内皮细胞胞内粘附分子-1表达的关键调节剂,在肝脏再生功能失调的患者中明显减少。模仿肝功能异常的临床危险因素,我们发现两种肝病模型的肝窦内皮细胞的DUSP4基线水平显著降低.
    探索人类肝脏再生的早期转录变化的景观,我们观察到功能失调的人经历压倒性的肝内炎症。亚临床肝病可能是肝窦内皮细胞DUSP4减少的原因,最终启动肝脏加重的炎症反应。
    使用独特的人类生物存储库,专注于肝脏再生(LR),我们探索了与功能和功能失调LR相关的循环和组织水平改变的景观。与实验动物模型相反,LR功能失调的人表现出转录炎症反应加重,更高的细胞内粘附分子-1(ICAM-1)诱导,诱导LR时肝内中性粒细胞积累和激活。尽管肝切除术后炎症反应迅速出现,LR功能失调患者的炎症反应过度,这似乎与LSECDUSP4水平降低有关,这对现有的切除后LR概念提出了挑战.
    UNASSIGNED: Although extensive experimental evidence on the process of liver regeneration exists, in humans, validation is largely missing. However, liver regeneration is critically affected by underlying liver disease. Within this project, we aimed to systematically assess early transcriptional changes during liver regeneration in humans and further assess how these processes differ in people with dysfunctional liver regeneration.
    UNASSIGNED: Blood samples of 154 patients and intraoperative tissue samples of 46 patients undergoing liver resection were collected and classified with regard to dysfunctional postoperative liver regeneration. Of those, a matched cohort of 21 patients were used for RNA sequencing. Samples were assessed for circulating cytokines, gene expression dynamics, intrahepatic neutrophil accumulation, and spatial transcriptomics.
    UNASSIGNED: Individuals with dysfunctional liver regeneration demonstrated an aggravated transcriptional inflammatory response with higher intracellular adhesion molecule-1 induction. Increased induction of this critical leukocyte adhesion molecule was associated with increased intrahepatic neutrophil accumulation and activation upon induction of liver regeneration in individuals with dysfunctional liver regeneration. Comparing baseline gene expression profiles in individuals with and without dysfunctional liver regeneration, we found that dual-specificity phosphatase 4 (DUSP4) expression, a known critical regulator of intracellular adhesion molecule-1 expression in endothelial cells, was markedly reduced in patients with dysfunctional liver regeneration. Mimicking clinical risk factors for dysfunctional liver regeneration, we found liver sinusoidal endothelial cells of two liver disease models to have significantly reduced baseline levels of DUSP4.
    UNASSIGNED: Exploring the landscape of early transcriptional changes of human liver regeneration, we observed that people with dysfunctional regeneration experience overwhelming intrahepatic inflammation. Subclinical liver disease might account for DUSP4 reduction in liver sinusoidal endothelial cells, which ultimately primes the liver for an aggravated inflammatory response.
    UNASSIGNED: Using a unique human biorepository, focused on liver regeneration (LR), we explored the landscape of circulating and tissue-level alterations associated with both functional and dysfunctional LR. In contrast to experimental animal models, people with dysfunctional LR demonstrated an aggravated transcriptional inflammatory response, higher intracellular adhesion molecule-1 (ICAM-1) induction, intrahepatic neutrophil accumulation and activation upon induction of LR. Although inflammatory responses appear rapidly after liver resection, people with dysfunctional LR have exaggerated inflammatory responses that appear to be related to decreased levels of LSEC DUSP4, challenging existing concepts of post-resectional LR.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    脓毒症急性肾损伤(AKI)通常与患者的肾功能不全和高死亡率有关。由于感染性AKI伴有炎症的快速和暴力发生,临床上没有有效的治疗方法。恩贝林,一种天然产物,在免疫细胞中具有潜在的调节作用。然而,Enbelin在脓毒性AKI中的作用和机制尚不清楚。本研究旨在阐明Enbelin在脂多糖(LPS)诱导的脓毒症AKI中巨噬细胞调节中的作用。LPS注射后,将Embelin腹膜内给予小鼠。随后从小鼠中分离出骨髓来源的巨噬细胞(BMDMs),以探索embelin在巨噬细胞中的免疫调节作用。我们发现,在LPS诱导的脓毒症小鼠模型中,恩贝林减轻了肾功能障碍和病理性肾损害。分子对接预测embelin可以在ser536位点与磷酸化的NF-κBp65结合。Embelin通过在LPS诱导的AKI中ser536处的磷酸化抑制NF-κBp65的易位。LPS刺激后,BMDMs和小鼠IL-1β和IL-6的分泌减少,IL-10和Arg-1的分泌增加,提示恩贝林抑制LPS诱导的AKI中巨噬细胞M1的活化。因此,embelin通过抑制活化巨噬细胞中ser536处的NF-κBp65来减轻LPS诱导的感染性AKI。这项临床前研究表明,embelin在脓毒性AKI中具有治疗作用。
    Septic acute kidney injury (AKI) is commonly associated with renal dysfunction and high mortality in patients. Owing to the rapid and violent occurrence of septic AKI with inflammation, there are no effective therapies to clinically treat it. Embelin, a natural product, has a potential regulatory role in immunocytes. However, the role and mechanism of embelin in septic AKI remains unknown. This study aimed to elucidate the role of embelin in macrophage regulation in lipopolysaccharide (LPS)-induced septic AKI. Embelin was intraperitoneally administered to mice after LPS injection. And bone marrow-derived macrophages (BMDMs) were subsequently isolated from the mice to explore the immunomodulatory role of embelin in macrophages. We found that embelin attenuated renal dysfunction and pathological renal damage in the LPS-induced sepsis mouse model. Molecular docking predicted that embelin could bind to phosphorylated NF-κB p65 at the ser536 site. Embelin inhibited the translocation of NF-κB p65 via phosphorylation at ser536 in LPS-induced AKI. It also reduced the secretion of IL-1β and IL-6 and increased the secretion of IL-10 and Arg-1 of BMDMs and mice after LPS stimulation, indicating that embelin suppressed macrophage M1 activation in LPS-induced AKI. Therefore, embelin attenuated LPS-induced septic AKI by suppressing NF-κB p65 at ser536 in activated macrophages. This study preclinically suggests a therapeutic role of embelin in septic AKI.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    眼科手术和COVID-19患者中最常见的疾病是真菌性眼部感染,这可能会导致炎症和干眼症,并可能导致眼部发病。两性霉素B滴眼液通常用于治疗眼部真菌感染。乳铁蛋白是一种具有广谱抗微生物活性的铁结合糖蛋白,用于治疗干眼症,结膜炎,和眼部炎症。然而,不良的房水稳定性和过度的鼻泪管引流阻碍了这些药物的效率。这项研究的目的是检查两性霉素B的作用,作为抗白色念珠菌的抗真菌药,镰刀菌,还有黄曲霉,和乳铁蛋白,作为抗炎和抗干眼症,当共负载三嵌段聚合物PLGA-PEG-PEI纳米颗粒包埋在P188-P407眼科热敏凝胶中时。通过双乳液溶剂蒸发法制备纳米颗粒。优化后的配方显示粒径(177.0±0.3nm),多分散指数(0.011±0.01),ζ电位(31.9±0.3mV),和包封%(90.9±0.5),改善了离体药代动力学参数和离体角膜穿透性,与药物溶液相比。共聚焦激光扫描显示了氟标记的纳米颗粒的有价值的渗透。刺激试验(Draize试验),原子力显微镜,细胞培养和动物试验,包括组织病理学分析,揭示了纳米颗粒在减少炎症迹象和根除兔真菌感染方面的优越性。不会对兔子的眼球造成任何伤害。纳米颗粒表现出良好的药效学特征和持续释放曲线,并且在体外或体内既无细胞毒性也无刺激性。开发的配方可能为治疗眼部问题提供一种新的安全的纳米技术,比如炎症和真菌感染.
    The most prevalent conditions among ocular surgery and COVID-19 patients are fungal eye infections, which may cause inflammation and dry eye, and may cause ocular morbidity. Amphotericin-B eye drops are commonly used in the treatment of ocular fungal infections. Lactoferrin is an iron-binding glycoprotein with broad-spectrum antimicrobial activity and is used for the treatment of dry eye, conjunctivitis, and ocular inflammation. However, poor aqueous stability and excessive nasolacrimal duct draining impede these agens\' efficiency. The aim of this study was to examine the effect of Amphotericin-B, as an antifungal against Candida albicans, Fusarium, and Aspergillus flavus, and Lactoferrin, as an anti-inflammatory and anti-dry eye, when co-loaded in triblock polymers PLGA-PEG-PEI nanoparticles embedded in P188-P407 ophthalmic thermosensitive gel. The nanoparticles were prepared by a double emulsion solvent evaporation method. The optimized formula showed particle size (177.0 ± 0.3 nm), poly-dispersity index (0.011 ± 0.01), zeta-potential (31.9 ± 0.3 mV), and entrapment% (90.9 ± 0.5) with improved ex-vivo pharmacokinetic parameters and ex-vivo trans-corneal penetrability, compared with drug solution. Confocal laser scanning revealed valuable penetration of fluoro-labeled nanoparticles. Irritation tests (Draize Test), Atomic force microscopy, cell culture and animal tests including histopathological analysis revealed superiority of the nanoparticles in reducing signs of inflammation and eradication of fungal infection in rabbits, without causing any damage to rabbit eyeballs. The nanoparticles exhibited favorable pharmacodynamic features with sustained release profile, and is neither cytotoxic nor irritating in-vitro or in-vivo. The developed formulation might provide a new and safe nanotechnology for treating eye problems, like inflammation and fungal infections.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    鱼糜生产过程中产生的废水中富含鱼肉中的水溶性蛋白质(WSP)。这项研究调查了使用原代巨噬细胞(MΦ)和动物摄入的鱼类WSP的抗炎作用和机制。用消化的WSP(d-WSP,500µg/mL),有或没有脂多糖(LPS)刺激。对于摄入研究,在施用LPS(4mg/kg体重)后,给雄性ICR小鼠(5周龄)喂食4%WSP14天。d-WSP降低了LPS受体Tlr4的表达。此外,d-WSP显著抑制炎性细胞因子的分泌,吞噬能力,以及LPS刺激的巨噬细胞的Myd88和Il1b表达。此外,摄入4%WSP不仅减少了LPS诱导的血液中IL-1β的分泌,而且减少了肝脏中Myd88和Il1b的表达。因此,鱼WSP降低了TLR4-MyD88通路相关基因在MΦ和肝脏中的表达,从而抑制炎症。
    Water-soluble protein (WSP) from fish meat is abundant in the waste effluent generated via the surimi manufacturing process. This study investigated the anti-inflammatory effects and mechanisms of fish WSP using primary macrophages (MΦ) and animal ingestion. MΦ were treated with digested-WSP (d-WSP, 500 µg/mL) with or without lipopolysaccharide (LPS) stimulation. For the ingestion study, male ICR mice (5 weeks old) were fed 4% WSP for 14 days following LPS administration (4 mg/kg body weight). d-WSP decreased the expression of Tlr4, an LPS receptor. Additionally, d-WSP significantly suppressed the secretion of inflammatory cytokines, phagocytic ability, and Myd88 and Il1b expressions of LPS-stimulated macrophages. Furthermore, the ingestion of 4% WSP attenuated not only LPS-induced IL-1β secretion in the blood but also Myd88 and Il1b expressions in the liver. Thus, fish WSP decreases the expressions of the genes involved in the TLR4-MyD88 pathway in MΦ and the liver, thereby suppressing inflammation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    未经证实:氧化应激被认为是非酒精性脂肪性肝炎(NASH)进展的主要驱动因素。转录因子NRF2及其负调节因子KEAP1是氧化还原的主调节因子,代谢和蛋白质稳态,以及排毒,因此似乎是治疗NASH的有吸引力的靶标。
    UNASSIGNED:分子建模和X射线晶体学用于设计S217879-一种可以破坏KEAP1-NRF2相互作用的小分子。使用各种分子和细胞测定高度表征S217879。然后在两个不同的NASH相关临床前模型中进行评估,即蛋氨酸和胆碱缺乏饮食(MCDD)和饮食诱导的肥胖NASH(DIONASH)模型。
    UNASSIGNED:基于分子和细胞的检测证实S217879是一种高效和选择性的NRF2激活剂,具有明显的抗炎特性,如原代人外周血单核细胞所示。在MCDD小鼠中,S217879治疗2周导致NAFLD活性评分的剂量依赖性降低,同时显着增加肝脏Nqo1mRNA水平,一种特定的NRF2靶参与生物标志物。在DIONASH小鼠中,S217879治疗导致已建立的肝损伤的显着改善,NAS和肝纤维化均明显减少。αSMA和Col1A1染色,以及肝脏羟脯氨酸水平的定量,证实了响应S217879的肝纤维化的减少。RNA测序分析揭示了响应S217879的肝脏转录组中的主要变化,NRF2依赖性基因转录的激活和驱动疾病进展的关键信号通路的显著抑制。
    UNASSIGNED:这些结果突出了NRF2-KEAP1相互作用选择性破坏治疗NASH和肝纤维化的潜力。
    UNASSIGNED:我们报告了S217879的发现——一种具有良好药代动力学特性的有效和选择性的NRF2激活剂。通过破坏KEAP1-NRF2相互作用,S217879触发抗氧化反应的上调和涉及NASH疾病进展的广谱基因的协调调节,最终导致小鼠NASH和肝纤维化进展的减少。
    UNASSIGNED: Oxidative stress is recognized as a major driver of non-alcoholic steatohepatitis (NASH) progression. The transcription factor NRF2 and its negative regulator KEAP1 are master regulators of redox, metabolic and protein homeostasis, as well as detoxification, and thus appear to be attractive targets for the treatment of NASH.
    UNASSIGNED: Molecular modeling and X-ray crystallography were used to design S217879 - a small molecule that could disrupt the KEAP1-NRF2 interaction. S217879 was highly characterized using various molecular and cellular assays. It was then evaluated in two different NASH-relevant preclinical models, namely the methionine and choline-deficient diet (MCDD) and diet-induced obesity NASH (DIO NASH) models.
    UNASSIGNED: Molecular and cell-based assays confirmed that S217879 is a highly potent and selective NRF2 activator with marked anti-inflammatory properties, as shown in primary human peripheral blood mononuclear cells. In MCDD mice, S217879 treatment for 2 weeks led to a dose-dependent reduction in NAFLD activity score while significantly increasing liver Nqo1 mRNA levels, a specific NRF2 target engagement biomarker. In DIO NASH mice, S217879 treatment resulted in a significant improvement of established liver injury, with a clear reduction in both NAS and liver fibrosis. αSMA and Col1A1 staining, as well as quantification of liver hydroxyproline levels, confirmed the reduction in liver fibrosis in response to S217879. RNA-sequencing analyses revealed major alterations in the liver transcriptome in response to S217879, with activation of NRF2-dependent gene transcription and marked inhibition of key signaling pathways that drive disease progression.
    UNASSIGNED: These results highlight the potential of selective disruption of the NRF2-KEAP1 interaction for the treatment of NASH and liver fibrosis.
    UNASSIGNED: We report the discovery of S217879 - a potent and selective NRF2 activator with good pharmacokinetic properties. By disrupting the KEAP1-NRF2 interaction, S217879 triggers the upregulation of the antioxidant response and the coordinated regulation of a wide spectrum of genes involved in NASH disease progression, leading ultimately to the reduction of both NASH and liver fibrosis progression in mice.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肿瘤相关巨噬细胞(TAMs)与多种肿瘤的发生和转移密切相关。TAMs的浸润用于预测癌症的预后,包括结直肠癌(CRC)。然而,在CRC中,瘤内M1和M2TAM表型与侵袭性前沿(IF)的密度和预后意义尚不清楚.在这项研究中,选择CD68作为TAM的一般标志物,CD11c,NOS2和CXCL10作为M1表型的标志物,CD163、CD206、CD115作为M2表型的标志物。首先,免疫组织化学染色和双标记免疫荧光染色显示M1分子标志物(NOS2,CXCL10,CD11c)在IF和肿瘤内均低表达,M2分子标志物(CD163、CD206、CD115)主要在IF高表达。此外,我们还证明了三个M1分子标记,包括NOS2,CXCL10和CD11c彼此相关。同时,3种M2分子标志物,包括CD163,CD206和CD115也相互关联.三种M1分子标志物(NOS2/CXCL10/CD11c)低表达的患者总生存率(OS)较低,而三个M2分子标志物(CD163/CD206/CD115)高表达的患者表现出较低的OS率。我们还观察到,三标记物组合(NOS2/CXCL10/CD11c或CD163/CD206/CD115)的预后价值优于单个标记物。一起,我们的研究结果揭示了TAMs标记物(NOS2/CXCL10/CD11c或CD163/CD206/CD115)的组合可以更好地评估CRC患者的预后,可作为一种更全面的预测CRC患者预后的方法。
    Tumor-associated macrophages (TAMs) are closely related to tumorigenesis and metastasis of multiple cancer types. The infiltration of TAMs is used for predicting the prognosis of cancers, including colorectal cancer (CRC). However, the density and prognostic significance of M1 and M2 TAM phenotypes in the intratumor versus the invasive front (IF) are largely unknown in CRC. In this study, CD68 was selected as a general marker of TAMs, CD11c, NOS2 and CXCL10 as markers for M1 phenotype and CD163, CD206, CD115 as markers for M2 phenotype. Firstly, immunohistochemistry staining and double-labeling immunofluorescence staining showed that M1 molecular markers (NOS2, CXCL10, CD11c) were lowly expressed at both IF and intratumor, while M2 molecular markers (CD163, CD206, CD115) were highly expressed mainly at IF. Moreover, we also demonstrated that three M1 molecular markers including NOS2, CXCL10 and CD11c were correlated to each other. Meanwhile, three M2 molecular markers including CD163, CD206, and CD115 were also correlated to each other. Patients with low expression of three M1 molecular markers (NOS2/CXCL10/CD11c) exhibited low overall survival (OS) rate, whereas patients with high expression of three M2 molecular markers (CD163/CD206/CD115) exhibited low OS rate. We also observed that the prognostic value of treble markers combination (NOS2/CXCL10/CD11c or CD163/CD206/CD115) was superior to that of single marker. Together, our results reveal the combination of treble TAMs markers (NOS2/CXCL10/CD11c or CD163/CD206/CD115) could better evaluate the prognosis of CRC patients, which might be used as a more comprehensive method for predicting the prognosis of CRC patients.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在甲壳类动物中,循环血细胞的数量变化迅速响应病原体感染和损伤,但潜在的机制仍不清楚。在这项研究中,我们研究了小龙虾血淋巴戒断后血细胞稳态的调节。我们发现,血淋巴撤药后1小时内循环血细胞增加了2倍以上,并在8小时内恢复正常水平。造血产生的新血细胞占总补充量的<6.5%,暗示固着血细胞在快速血细胞供应中的主要作用。此外,当移植血细胞时,额外的细胞被有效地储存,主要是在ill。这些储存的细胞可以根据需要立即释放到循环中。值得注意的是,白斑综合征病毒感染消除了血细胞稳态的快速调节。这些数据表明,固着和循环血细胞之间的调整可能是小龙虾循环血细胞快速调节的主要途径,这个过程可能会被病原体感染改变。
    In crustaceans, the number of circulating hemocytes changes rapidly in response to pathogen infection and injury, but the underlying mechanism remains unclear. In this study, we investigated the regulation of hemocytes homeostasis in crayfish after hemolymph withdrawal. We showed that the circulating hemocytes increased by over 2 folds within 1 h post hemolymph withdrawal and returned to normal level within 8 h. New hemocytes produced by hematopoiesis accounted for <6.5% of the total replenishment, implying a major role of sessile hemocytes in rapid hemocyte supply. Moreover, when hemocytes were transplanted, the extra cells were efficiently stored, mainly in the gill. These stored cells could be released into circulation immediately on demand. Notably, the rapid regulation of hemocyte homeostasis was abolished by white spot syndrome virus infection. These data indicate that the adjustment between the sessile and circulating pools of hemocytes may be the major route for the rapid regulation of circulating hemocytes in crayfish, and this process may be altered by pathogen infection.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    糖脂代谢紊乱是威胁人类健康和生命的主要因素。遗传,环境,心理,细胞,和分子因素有助于其发病机制。一些研究表明,神经内分泌轴功能障碍,胰岛素抵抗,氧化应激,慢性炎症反应,肠道菌群失调是与其相关的核心病理联系。然而,糖脂代谢紊乱的潜在分子机制和治疗靶点仍有待阐明。高通量技术的进展有助于阐明糖脂代谢紊乱的病理生理学。在本次审查中,我们探索了基因组学的方法和方法,转录组学,蛋白质组学,代谢组学,和肠道微生物可以帮助识别新的候选生物标志物,用于糖脂代谢紊乱的临床管理。我们还讨论了这些疾病的多组学研究的局限性和建议的未来研究方向。
    Glycolipid metabolism disorder are major threats to human health and life. Genetic, environmental, psychological, cellular, and molecular factors contribute to their pathogenesis. Several studies demonstrated that neuroendocrine axis dysfunction, insulin resistance, oxidative stress, chronic inflammatory response, and gut microbiota dysbiosis are core pathological links associated with it. However, the underlying molecular mechanisms and therapeutic targets of glycolipid metabolism disorder remain to be elucidated. Progress in high-throughput technologies has helped clarify the pathophysiology of glycolipid metabolism disorder. In the present review, we explored the ways and means by which genomics, transcriptomics, proteomics, metabolomics, and gut microbiomics could help identify novel candidate biomarkers for the clinical management of glycolipid metabolism disorder. We also discuss the limitations and recommended future research directions of multi-omics studies on these diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    长期以来,人们一直低估了蛋白质-聚糖相互作用在免疫中的相关性。然而,免疫系统拥有许多种类的聚糖结合蛋白,所谓的凝集素。特别感兴趣的是一组髓样C型凝集素受体(CLR),因为它们主要由髓样细胞表达并且在免疫应答的起始中起重要作用。髓样CLR代表模式识别受体(PRR)中的一个主要群体,将它们置于快速增长的糖免疫学领域的中心。CLR已经发展为涵盖宽范围的结构和功能并且识别来自不同类别的生物聚合物的大量聚糖和许多其他配体。这篇综述旨在为读者提供髓样CLR和选定的配体的概述,同时强调最近对CLR-配体相互作用的见解。随后,将介绍CLR-配体研究的方法学方法。最后,这篇综述将讨论CLR-配体相互作用如何在免疫功能中达到顶峰,聚糖模仿如何促进病原体的免疫逃逸,免疫反应可以长期受到CLR-配体相互作用的影响。
    The relevance of protein-glycan interactions in immunity has long been underestimated. Yet, the immune system possesses numerous classes of glycan-binding proteins, so-called lectins. Of specific interest is the group of myeloid C-type lectin receptors (CLRs) as they are mainly expressed by myeloid cells and play an important role in the initiation of an immune response. Myeloid CLRs represent a major group amongst pattern recognition receptors (PRRs), placing them at the center of the rapidly growing field of glycoimmunology. CLRs have evolved to encompass a wide range of structures and functions and to recognize a large number of glycans and many other ligands from different classes of biopolymers. This review aims at providing the reader with an overview of myeloid CLRs and selected ligands, while highlighting recent insights into CLR-ligand interactions. Subsequently, methodological approaches in CLR-ligand research will be presented. Finally, this review will discuss how CLR-ligand interactions culminate in immunological functions, how glycan mimicry favors immune escape by pathogens, and in which way immune responses can be affected by CLR-ligand interactions in the long term.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    未经证实:XBP1调节巨噬细胞促炎反应,但其在巨噬细胞刺激因子干扰素基因(STING)激活和肝纤维化中的作用尚不清楚。X-box结合蛋白1(XBP1)已被证明可促进巨噬细胞核苷酸结合寡聚化结构域,脂肪性肝炎中富含亮氨酸的重复序列和含pyrin结构域3(NLRP3)的激活。在这里,我们旨在探讨XBP1在STING信号调节和随后的NLRP3激活肝纤维化过程中的潜在机制。
    未经证实:在人纤维化肝组织样品中测量XBP1表达。在骨髓特异性Xbp1-中诱导肝纤维化,发抖-,和Nlrp3缺陷小鼠通过四氯化碳注射,胆管结扎,或蛋氨酸/胆碱缺乏的饮食。
    UASSIGNED:尽管在小鼠和临床患者的纤维化肝巨噬细胞中观察到XBP1表达增加,骨髓特异性Xbp1缺乏或XBP1的药理抑制保护肝脏免受纤维化。此外,它以STING/IRF3依赖性方式抑制巨噬细胞NLPR3激活。氧化性线粒体损伤促进巨噬细胞自身mtDNA和cGAS/STING/NLRP3信号激活的胞浆渗漏以促进肝纤维化。机械上,RNA测序分析表明,在Xbp1缺陷型巨噬细胞中,mtDNA表达降低,BCL2/腺病毒E1B相互作用蛋白3(BNIP3)介导的线粒体自噬激活增加。染色质免疫沉淀(ChIP)分析进一步表明,剪接的XBP1直接与Bnip3启动子结合,并抑制巨噬细胞中Bnip3的转录。Xbp1缺乏通过促进巨噬细胞中BNIP3介导的线粒体自噬激活来降低mtDNA胞质释放和STING/NLRP3激活,被Bnip3击倒而废除。此外,巨噬细胞XBP1/STING信号传导有助于肝星状细胞的激活。
    UNASSIGNED:我们的研究结果表明,XBP1通过BNIP3介导的线粒体自噬调节巨噬细胞自身mtDNA胞质渗漏来控制巨噬细胞cGAS/STING/NLRP3的激活,从而提供了一种新的抗肝纤维化靶点。
    UNASSIGNED:肝纤维化是慢性肝病的典型进展过程,由炎症和免疫反应驱动,其特征在于肝脏中的细胞外基质过量。目前,目前尚无有效的肝纤维化治疗策略,导致全世界的高死亡率。在这项研究中,我们发现髓系特异性Xbp1缺乏保护小鼠肝脏免受纤维化,而XBP1抑制改善小鼠肝纤维化。这项研究得出结论,在巨噬细胞中靶向XBP1信号可能提供一种保护肝脏免受纤维化的新策略。
    UNASSIGNED: XBP1 modulates the macrophage proinflammatory response, but its function in macrophage stimulator of interferon genes (STING) activation and liver fibrosis is unknown. X-box binding protein 1 (XBP1) has been shown to promote macrophage nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3 (NLRP3) activation in steatohepatitis. Herein, we aimed to explore the underlying mechanism of XBP1 in the regulation of STING signalling and the subsequent NLRP3 activation during liver fibrosis.
    UNASSIGNED: XBP1 expression was measured in the human fibrotic liver tissue samples. Liver fibrosis was induced in myeloid-specific Xbp1-, STING-, and Nlrp3-deficient mice by carbon tetrachloride injection, bile duct ligation, or a methionine/choline-deficient diet.
    UNASSIGNED: Although increased XBP1 expression was observed in the fibrotic liver macrophages of mice and clinical patients, myeloid-specific Xbp1 deficiency or pharmacological inhibition of XBP1 protected the liver against fibrosis. Furthermore, it inhibited macrophage NLPR3 activation in a STING/IRF3-dependent manner. Oxidative mitochondrial injury facilitated cytosolic leakage of macrophage self-mtDNA and cGAS/STING/NLRP3 signalling activation to promote liver fibrosis. Mechanistically, RNA sequencing analysis indicated a decreased mtDNA expression and an increased BCL2/adenovirus E1B interacting protein 3 (BNIP3)-mediated mitophagy activation in Xbp1-deficient macrophages. Chromatin immunoprecipitation (ChIP) assays further suggested that spliced XBP1 bound directly to the Bnip3 promoter and inhibited the transcription of Bnip3 in macrophages. Xbp1 deficiency decreased the mtDNA cytosolic release and STING/NLRP3 activation by promoting BNIP3-mediated mitophagy activation in macrophages, which was abrogated by Bnip3 knockdown. Moreover, macrophage XBP1/STING signalling contributed to the activation of hepatic stellate cells.
    UNASSIGNED: Our findings demonstrate that XBP1 controls macrophage cGAS/STING/NLRP3 activation by regulating macrophage self-mtDNA cytosolic leakage via BNIP3-mediated mitophagy modulation, thus providing a novel target against liver fibrosis.
    UNASSIGNED: Liver fibrosis is a typical progressive process of chronic liver disease, driven by inflammatory and immune responses, and is characterised by an excess of extracellular matrix in the liver. Currently, there is no effective therapeutic strategy for the treatment of liver fibrosis, resulting in high mortality worldwide. In this study, we found that myeloid-specific Xbp1 deficiency protected the liver against fibrosis in mice, while XBP1 inhibition ameliorated liver fibrosis in mice. This study concluded that targeting XBP1 signalling in macrophages may provide a novel strategy for protecting the liver against fibrosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号