ICD, immunogenic cell death

  • 文章类型: Journal Article
    通过重编程肿瘤相关巨噬细胞(TAM)重塑肿瘤微环境和通过免疫原性细胞死亡(ICD)增加肿瘤的免疫原性已成为有前途的抗癌免疫治疗策略。然而,TAMs在肿瘤组织中的异质性分布和肿瘤细胞的异质性使得免疫激活具有挑战性。为了克服这些困境,一种具有肿瘤靶向和渗透的杂交细菌,TAM极化,和光热转化能力被开发用于改善体内抗肿瘤免疫疗法。杂种细菌(B.b@QDs)是通过将Ag2S量子点(QDs)负载在两歧双歧杆菌(B.b)通过静电相互作用。具有缺氧靶向能力的杂合菌可有效蓄积并穿透肿瘤组织,使B.b与TAM充分接触并介导它们向M1表型的极化,以逆转免疫抑制性肿瘤微环境。通过将B.b的肿瘤渗透与QDs的光热效应耦合,还可以克服肿瘤内异质性并获得丰富的肿瘤相关抗原,导致增强的免疫效果。这种结合了B.b触发的TAM极化和QD诱导的ICD的策略在原位乳腺癌中实现了对肿瘤生长的显着抑制。
    Remodeling the tumor microenvironment through reprogramming tumor-associated macrophages (TAMs) and increasing the immunogenicity of tumors via immunogenic cell death (ICD) have been emerging as promising anticancer immunotherapy strategies. However, the heterogeneous distribution of TAMs in tumor tissues and the heterogeneity of the tumor cells make the immune activation challenging. To overcome these dilemmas, a hybrid bacterium with tumor targeting and penetration, TAM polarization, and photothermal conversion capabilities is developed for improving antitumor immunotherapy in vivo. The hybrid bacteria (B.b@QDs) are prepared by loading Ag2S quantum dots (QDs) on the Bifidobacterium bifidum (B.b) through electrostatic interactions. The hybrid bacteria with hypoxia targeting ability can effectively accumulate and penetrate the tumor tissues, enabling the B.b to fully contact with the TAMs and mediate their polarization toward M1 phenotype to reverse the immunosuppressive tumor microenvironment. It also enables to overcome the intratumoral heterogeneity and obtain abundant tumor-associated antigens by coupling tumor penetration of the B.b with photothermal effect of the QDs, resulting in an enhanced immune effect. This strategy that combines B.b-triggered TAM polarization and QD-induced ICD achieved a remarkable inhibition of tumor growth in orthotopic breast cancer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肿瘤免疫治疗已成为新一代抗肿瘤治疗,但是它的适应症仍然集中在对免疫系统敏感的几种类型的肿瘤上。因此,扩大适应证、提高疗效的有效策略成为肿瘤免疫治疗进一步发展的关键要素。据报道,天然产物对癌症免疫疗法有这种作用,包括癌症疫苗,免疫检查点抑制剂,和过继免疫细胞疗法。其机制主要归因于肿瘤免疫抑制微环境的重塑,是帮助肿瘤避免免疫系统和癌症免疫疗法识别和攻击的关键因素。因此,这篇综述总结并总结了据报道可改善癌症免疫治疗的天然产物,并研究了其机制。我们发现皂苷,多糖,黄酮类化合物主要是三类天然产物,这反映了通过逆转肿瘤免疫抑制微环境与癌症免疫治疗相结合的显着效果。此外,这篇综述还收集了有关纳米技术用于改善天然产物缺点的研究。所有这些研究都显示了天然产物在癌症免疫疗法中的巨大潜力。
    Cancer immunotherapy has become a new generation of anti-tumor treatment, but its indications still focus on several types of tumors that are sensitive to the immune system. Therefore, effective strategies that can expand its indications and enhance its efficiency become the key element for the further development of cancer immunotherapy. Natural products are reported to have this effect on cancer immunotherapy, including cancer vaccines, immune-check points inhibitors, and adoptive immune-cells therapy. And the mechanism of that is mainly attributed to the remodeling of the tumor-immunosuppressive microenvironment, which is the key factor that assists tumor to avoid the recognition and attack from immune system and cancer immunotherapy. Therefore, this review summarizes and concludes the natural products that reportedly improve cancer immunotherapy and investigates the mechanism. And we found that saponins, polysaccharides, and flavonoids are mainly three categories of natural products, which reflected significant effects combined with cancer immunotherapy through reversing the tumor-immunosuppressive microenvironment. Besides, this review also collected the studies about nano-technology used to improve the disadvantages of natural products. All of these studies showed the great potential of natural products in cancer immunotherapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    钙网蛋白(CRT),通常位于内质网(ER)中的伴侣,已知在响应抗癌药物时易位到细胞表面。凋亡或凋亡前细胞上的细胞表面CRT(ecto-CRT)充当“吃我”信号,可以促进吞噬作用。在这项研究中,我们观察到奥沙利铂(L-OHP)治疗后HT-29细胞上的ecto-CRT的双相(早期短暂和晚期持续)增加。为了研究在早期和晚期阶段积累的ecto-CRT作为“吃我”信号的作用,我们检查了由THP-1细胞制备的巨噬细胞样细胞和树突状细胞(DC)样细胞对HT-29细胞的吞噬作用。结果表明,早期表达的细胞被未成熟的DC样细胞吞噬,晚期表达的细胞主要被巨噬细胞样细胞吞噬,而成熟的DC样细胞对这两类表达的细胞均无反应。两种类型的吞噬事件都被CRT阻断肽抑制,这表明此类事件取决于ecto-CRT。我们的结果表明,早期增加的ecto-CRT与吞噬作用有关,作为免疫原性细胞死亡(ICD)的一部分,而ecto-CRT的晚期增加与巨噬细胞对凋亡细胞的去除有关。
    Calreticulin (CRT), a chaperone typically located in the endoplasmic reticulum (ER), is known to translocate to the cell surface in response to anticancer drugs. Cell surface CRT (ecto-CRT) on apoptotic or pre-apoptotic cells serves as an \"eat me\" signal that can promote phagocytosis. In this study, we observed the biphasic (early transient and late sustained) increase of ecto-CRT on HT-29 cells after treatment with oxaliplatin (L-OHP). To investigate the role of ecto-CRT that accumulates in the early and late phases as \"eat me\" signals, we examined the phagocytosis of HT-29 cells by macrophage-like cells and dendritic cell (DC) -like cells prepared from THP-1 cells. The results indicated that the early ecto-CRT-expressed cells were phagocytosed by immature DC-like cells, and the late ecto-CRT-expressed cells were phagocytosed primarily by macrophage-like cells, while mature DC-like cells did not respond to the either class of ecto-CRT-expressed cells. Both types of phagocytotic events were inhibited by CRT Blocking Peptide, suggesting that such events depended on the ecto-CRT. Our results suggested that the early increase of ecto-CRT is related to phagocytosis as part of immunogenic cell death (ICD), while the late increase of ecto-CRT is related to the removal of apoptotic cells by macrophages.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    化疗和免疫疗法的结合通过引发免疫原性细胞死亡(ICD)来激发强大的免疫系统,在抑制肿瘤生长和改善免疫抑制肿瘤微环境(ITM)方面显示出巨大的潜力。然而,低劣的药物生物利用度限制了治疗效果。在这里,我们报道了一种通用的生物响应性阿霉素(DOX)基纳米凝胶,可实现肿瘤特异性药物共递送。设计并选择基于DOX的甘露糖纳米凝胶(DMNG)作为示例,以阐明联合化学免疫疗法的机制。不出所料,DMNG表现出显著的胶束稳定性,选择性药物释放和延长生存时间,受益于增强肿瘤通透性和延长血液循环。我们发现由DMNG递送的DOX可以通过促进ICD来诱导强大的抗肿瘤免疫应答。同时,从DMNGs释放的甘露糖被证明在体外和体内对乳腺癌具有强大的协同治疗作用,通过破坏糖酵解和三羧酸循环中的葡萄糖代谢。总的来说,基于DOX的纳米凝胶对肿瘤微环境的调节有望成为一种有效的候选策略,以克服基于ICD的免疫治疗的当前局限性。为免疫调节纳米药物的开发提供了范例。
    The combination of chemotherapy and immunotherapy motivates a potent immune system by triggering immunogenic cell death (ICD), showing great potential in inhibiting tumor growth and improving the immunosuppressive tumor microenvironment (ITM). However, the therapeutic effectiveness has been restricted by inferior drug bioavailability. Herein, we reported a universal bioresponsive doxorubicin (DOX)-based nanogel to achieve tumor-specific co-delivery of drugs. DOX-based mannose nanogels (DM NGs) was designed and choosed as an example to elucidate the mechanism of combined chemo-immunotherapy. As expected, the DM NGs exhibited prominent micellar stability, selective drug release and prolonged survival time, benefited from the enhanced tumor permeability and prolonged blood circulation. We discovered that the DOX delivered by DM NGs could induce powerful anti-tumor immune response facilitated by promoting ICD. Meanwhile, the released mannose from DM NGs was proved as a powerful and synergetic treatment for breast cancer in vitro and in vivo, via damaging the glucose metabolism in glycolysis and the tricarboxylic acid cycle. Overall, the regulation of tumor microenvironment with DOX-based nanogel is expected to be an effectual candidate strategy to overcome the current limitations of ICD-based immunotherapy, offering a paradigm for the exploitation of immunomodulatory nanomedicines.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    免疫检查点阻断疗法已经深刻地彻底改变了癌症免疫治疗领域。然而,尽管对各种癌症有很大的希望,免疫检查点抑制剂在结直肠癌(CRC)中的疗效仍然较低.这主要是由于肿瘤微环境(TME)的免疫抑制特征。新的证据表明,某些化疗药物诱导免疫原性细胞死亡(ICD),显示出重塑免疫抑制TME的巨大潜力。在这项研究中,使用体外和体内实验方法证实了人参皂苷Rg3(Rg3)作为针对CRC细胞的ICD诱导物的潜力。槲皮素(QTN)可引起活性氧(ROS),从而显着增强Rg3的ICD功效。为了改善与化疗药物相关的体内递送障碍,开发了叶酸(FA)靶向的聚乙二醇(PEG)修饰的两亲性环糊精纳米颗粒(NP)用于Rg3和QTN的共封装。得到的纳米制剂(CD-PEG-FA.Rg3.QTN)在原位CRC小鼠模型中显着延长了血液循环并增强了肿瘤靶向,导致免疫抑制TME的转化。此外,CD-PEG-FA。Rg3.QTN与抗PD-L1组合实现了动物的显著更长的存活。该研究为CRC的治疗提供了有希望的策略。
    The immune checkpoint blockade therapy has profoundly revolutionized the field of cancer immunotherapy. However, despite great promise for a variety of cancers, the efficacy of immune checkpoint inhibitors is still low in colorectal cancer (CRC). This is mainly due to the immunosuppressive feature of the tumor microenvironment (TME). Emerging evidence reveals that certain chemotherapeutic drugs induce immunogenic cell death (ICD), demonstrating great potential for remodeling the immunosuppressive TME. In this study, the potential of ginsenoside Rg3 (Rg3) as an ICD inducer against CRC cells was confirmed using in vitro and in vivo experimental approaches. The ICD efficacy of Rg3 could be significantly enhanced by quercetin (QTN) that elicited reactive oxygen species (ROS). To ameliorate in vivo delivery barriers associated with chemotherapeutic drugs, a folate (FA)-targeted polyethylene glycol (PEG)-modified amphiphilic cyclodextrin nanoparticle (NP) was developed for co-encapsulation of Rg3 and QTN. The resultant nanoformulation (CD-PEG-FA.Rg3.QTN) significantly prolonged blood circulation and enhanced tumor targeting in an orthotopic CRC mouse model, resulting in the conversion of immunosuppressive TME. Furthermore, the CD-PEG-FA.Rg3.QTN achieved significantly longer survival of animals in combination with Anti-PD-L1. The study provides a promising strategy for the treatment of CRC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    纳米颗粒药物递送系统(Nano-DDS)已经成为抗癌药物递送障碍的可能解决方案。然而,临床结果和翻译受到几个缺点的限制,如低药物负载,药物过早泄漏和载体相关毒性。最近,纯药物纳米组件(PDNAs),通过纯药物分子的自组装或共组装制造,引起了相当大的关注。他们的简便和可重复的制备技术有助于消除纳米药物的瓶颈,包括质量控制,扩大生产和临床翻译。既是承运人又是货物,无载体的PDNA具有超高或甚至100%的载药量。此外,基于PDNA的联合疗法可能解决癌症治疗中最棘手的问题,如肿瘤转移和耐药。在本次审查中,概述了PDNA用于癌症治疗的最新进展。首先,PDNA根据药物分子的组成进行分类,并对装配机理进行了讨论。此外,总结了用于联合治疗的PDNA的共同递送,特别关注治疗结果的改善。最后,PDNA用于有效癌症治疗的未来前景和挑战受到关注。
    Nanoparticulate drug delivery systems (Nano-DDSs) have emerged as possible solution to the obstacles of anticancer drug delivery. However, the clinical outcomes and translation are restricted by several drawbacks, such as low drug loading, premature drug leakage and carrier-related toxicity. Recently, pure drug nano-assemblies (PDNAs), fabricated by the self-assembly or co-assembly of pure drug molecules, have attracted considerable attention. Their facile and reproducible preparation technique helps to remove the bottleneck of nanomedicines including quality control, scale-up production and clinical translation. Acting as both carriers and cargos, the carrier-free PDNAs have an ultra-high or even 100% drug loading. In addition, combination therapies based on PDNAs could possibly address the most intractable problems in cancer treatment, such as tumor metastasis and drug resistance. In the present review, the latest development of PDNAs for cancer treatment is overviewed. First, PDNAs are classified according to the composition of drug molecules, and the assembly mechanisms are discussed. Furthermore, the co-delivery of PDNAs for combination therapies is summarized, with special focus on the improvement of therapeutic outcomes. Finally, future prospects and challenges of PDNAs for efficient cancer therapy are spotlighted.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    癌症治疗的主要挑战是如何有效消除原发性肿瘤并充分诱导免疫原性细胞死亡(ICD)以激发强大的免疫反应来控制转移。这里,开发了一种自组装的级联生物反应器,以增强肿瘤渗透和饥饿的协同治疗来改善癌症治疗,化学动力学(CDT)和光热疗法。以葡萄糖氧化酶(GOx)为模板合成超小FeS-GOx纳米点,紫杉醇(PTX)通过疏水作用诱导形成自组装FeS-GOx@PTX(FGP)。在肿瘤部位积累后,FGP分解为较小的FeS-GOx,以增强肿瘤的深层渗透。GOx维持高的酶活性以在氧的辅助下催化葡萄糖以产生过氧化氢(H2O2)作为饥饿疗法。涉及再生H2O2的Fenton反应进而产生更多的羟基自由基以增强CDT。跟随808nm的近红外激光,通过联合治疗,FGP在体外和体内显示出显著的肿瘤抑制。随之而来的钙网织蛋白暴露增加了ICD并促进了树突状细胞的成熟。结合抗CTLA4检查点封锁,由于细胞毒性T淋巴细胞的肿瘤内浸润增强,FGP可以绝对消除原发性肿瘤并积极抑制远处肿瘤。我们的工作提出了一种有希望的原发性肿瘤和转移抑制策略。
    Major challenges for cancer treatment are how to effectively eliminate primary tumor and sufficiently induce immunogenic cell death (ICD) to provoke a robust immune response for metastasis control. Here, a self-assembled cascade bioreactor was developed to improve cancer treatment with enhanced tumor penetration and synergistic therapy of starvation, chemodynamic (CDT) and photothermal therapy. Ultrasmall FeS-GOx nanodots were synthesized with glucose oxidase (GOx) as template and induced by paclitaxel (PTX) to form self-assembling FeS-GOx@PTX (FGP) via hydrophobic interaction. After accumulated at tumor sites, FGP disassembles to smaller FeS-GOx for enhanced deep tumor penetration. GOx maintains high enzymatic activity to catalyze glucose with assistant of oxygen to generate hydrogen peroxide (H2O2) as starvation therapy. Fenton reaction involving the regenerated H2O2 in turn produced more hydroxyl radicals for enhanced CDT. Following near-infrared laser at 808 nm, FGPs displayed pronounced tumor inhibition in vitro and in vivo by the combination therapy. The consequent increased exposure to calreticulin amplified ICD and promoted dendritic cells maturation. In combination with anti-CTLA4 checkpoint blockade, FGP can absolutely eliminate primary tumor and avidly inhibit distant tumors due to the enhanced intratumoral infiltration of cytotoxic T lymphocytes. Our work presents a promising strategy for primary tumor and metastasis inhibition.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    免疫疗法是癌症治疗的快速发展领域,因为其具有比传统疗法更高的特异性和具有更大功效的潜力。通过给药进行免疫细胞调节,蛋白质,和细胞可以通过在免疫抑制肿瘤存在下可能被抑制的途径增强抗肿瘤反应。磁系统为提高免疫疗法的性能提供了几个优点。包括增加对运输的时空控制,释放,以及体内免疫调节药物的剂量,导致减少的脱靶效应和提高疗效。与光和pH等刺激药物释放的替代方法相比,磁系统使几种不同的方法编程免疫反应。首先,我们讨论了磁性热疗如何刺激免疫细胞并引发热响应性药物释放。第二,我们总结了药物载体的磁性靶向递送如何增加药物在靶位点的积累。第三,我们回顾了生物材料如何经历磁驱动的结构变化,以实现封装药物的远程释放。第四,我们描述了使用磁性颗粒与细胞受体的靶向相互作用以促进抗肿瘤活性。最后,我们讨论这些系统的翻译考虑因素,如毒性,临床相容性,以及改善癌症治疗的未来机会。
    Immunotherapy is a rapidly developing area of cancer treatment due to its higher specificity and potential for greater efficacy than traditional therapies. Immune cell modulation through the administration of drugs, proteins, and cells can enhance antitumoral responses through pathways that may be otherwise inhibited in the presence of immunosuppressive tumors. Magnetic systems offer several advantages for improving the performance of immunotherapies, including increased spatiotemporal control over transport, release, and dosing of immunomodulatory drugs within the body, resulting in reduced off-target effects and improved efficacy. Compared to alternative methods for stimulating drug release such as light and pH, magnetic systems enable several distinct methods for programming immune responses. First, we discuss how magnetic hyperthermia can stimulate immune cells and trigger thermoresponsive drug release. Second, we summarize how magnetically targeted delivery of drug carriers can increase the accumulation of drugs in target sites. Third, we review how biomaterials can undergo magnetically driven structural changes to enable remote release of encapsulated drugs. Fourth, we describe the use of magnetic particles for targeted interactions with cellular receptors for promoting antitumor activity. Finally, we discuss translational considerations of these systems, such as toxicity, clinical compatibility, and future opportunities for improving cancer treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:免疫检查点阻断(ICB)已被批准用于肝细胞癌(HCC)的治疗。然而,许多晚期HCC患者对ICB单药治疗无反应。已提出细胞毒性化学疗法来调节肿瘤微环境(TME)并使肿瘤对ICB敏感。因此,我们的目的是在原位HCC模型中研究细胞毒性化疗和ICB的组合。
    方法:使用临床前原位HCC小鼠模型来阐明5-氟尿嘧啶(5-FU)和ICB的功效。小鼠肝内注射RIL-175或Hepa1-6细胞,然后用5-FU和抗程序性细胞死亡配体1(PD-L1)抗体处理。骨髓来源的抑制细胞(MDSC)被耗尽以验证其在减弱对免疫疗法的敏感性中的作用。在小鼠和患者样本中进行基于流式细胞术的免疫谱分析和免疫荧光染色,分别。
    结果:5-FU可以诱导肿瘤内MDSC的积累,以抵消T淋巴细胞和自然杀伤细胞的浸润,从而取消PD-L1阻断的抗肿瘤功效。在临床样本中,经动脉化疗栓塞后,MDSCs积累,CD8+T细胞数量减少。
    结论:5-FU可以引发免疫抑制MDSCs的积累,在HCC中损害对PD-L1阻断的反应。我们的数据表明,特异性化疗和ICB的组合可能会损害抗肿瘤免疫反应,需要在临床前模型中进一步研究,并在临床环境中考虑。
    背景:我们的研究结果表明,一些化疗可能会损害免疫治疗的抗肿瘤功效。需要进一步的研究来揭示不同化疗对肿瘤免疫谱的具体影响。这些数据对于合理设计肝细胞癌患者的联合免疫治疗策略至关重要。
    OBJECTIVE: Immune checkpoint blockade (ICB) has been approved for treatment of hepatocellular carcinoma (HCC). However, many patients with advanced HCC are non-responders to ICB monotherapy. Cytotoxic chemotherapy has been proposed to modulate the tumor microenvironment (TME) and sensitize tumors to ICB. Thus, we aimed to study the combination of cytotoxic chemotherapy and ICB in an orthotopic HCC model.
    METHODS: Preclinical orthotopic HCC mouse models were used to elucidate the efficacy of 5-fluorouracil (5-FU) and ICB. The mice were intrahepatically injected with RIL-175 or Hepa1-6 cells, followed by treatment with 5-FU and anti-programmed cell death ligand 1 (PD-L1) antibody. Myeloid-derived suppressor cells (MDSCs) were depleted to validate their role in attenuating sensitivity to immunotherapy. Flow cytometry-based immune profiling and immunofluorescence staining were performed in mice and patient samples, respectively.
    RESULTS: 5-FU could induce intratumoral MDSC accumulation to counteract the infiltration of T lymphocytes and natural killer cells, thus abrogating the anti-tumor efficacy of PD-L1 blockade. In clinical samples, MDSCs accumulated and CD8+ T cell numbers decreased following transarterial chemoembolization.
    CONCLUSIONS: 5-FU can trigger the accumulation of immunosuppressive MDSCs, impairing the response to PD-L1 blockade in HCC. Our data suggest that the combination of specific chemotherapy and ICB may impair anti-tumor immune responses, warranting further study in preclinical models and consideration in clinical settings.
    BACKGROUND: Our findings suggest that some chemotherapies may impair the anti-tumor efficacy of immunotherapy. Further studies are required to uncover the specific effects of different chemotherapies on the immunological profile of tumors. This data will be critical for the rational design of combination immunotherapy strategies for patients with hepatocellular carcinoma.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Review
    现在使用术语“免疫原性细胞死亡”(ICD)来表示功能上独特的凋亡形式,足以使免疫活性宿主产生针对死细胞相关抗原的适应性免疫反应。当用作独立的治疗干预措施时,几种药物被认为具有激发ICD的能力。这些包括临床上常规使用的各种化疗药物(例如,阿霉素,表柔比星,伊达比星,米托蒽醌,博来霉素,硼替佐米,环磷酰胺和奥沙利铂)以及一些仍在临床前或临床开发中的抗癌剂(例如,埃坡霉素家族的一些微管抑制剂)。此外,一些药物能够将细胞死亡的非免疫原性实例转化为真正的ICD,因此可以在组合方案中用作化疗佐剂。强心苷就是这种情况,比如地高辛和洋地黄毒苷,和唑来膦酸.这里,我们讨论了基于ICD诱导剂的抗癌化疗的最新进展。
    The term \"immunogenic cell death\" (ICD) is now employed to indicate a functionally peculiar form of apoptosis that is sufficient for immunocompetent hosts to mount an adaptive immune response against dead cell-associated antigens. Several drugs have been ascribed with the ability to provoke ICD when employed as standalone therapeutic interventions. These include various chemotherapeutics routinely employed in the clinic (e.g., doxorubicin, epirubicin, idarubicin, mitoxantrone, bleomycin, bortezomib, cyclophosphamide and oxaliplatin) as well as some anticancer agents that are still under preclinical or clinical development (e.g., some microtubular inhibitors of the epothilone family). In addition, a few drugs are able to convert otherwise non-immunogenic instances of cell death into bona fide ICD, and may therefore be employed as chemotherapeutic adjuvants within combinatorial regimens. This is the case of cardiac glycosides, like digoxin and digitoxin, and zoledronic acid. Here, we discuss recent developments on anticancer chemotherapy based on ICD inducers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号