Enzyme Catalysis

酶催化
  • 文章类型: Journal Article
    了解有助于酶活性的所有参数在酶催化中是至关重要的。对于酶促PET降解,这涉及检查酶-PET复合物的形成。在IsPETase(WT)中,来自Ideonellasakaiensis的PET降解酶,突变两个非催化残基(DM)显著增强活性。这样的突变,根据它们在三级结构中的位置,微调酶的功能。然而,缺乏对PET降解这些突变的结构功能关系的详细分子见解。本研究使用分子动力学模拟和量子力学方法描述了IsPETase与WTTfCut2相比的催化能力。我们探索了酶-PET复合物的构象景观,并量化了残基间的相互作用能。值得注意的是,芳香和疏水残基Tyr,Trp,和催化亚位点S1中的Ile,以及锚定亚位点S3中的芳族Phe和极性Asn,至关重要地优化了PET结合。这些残留物提高了PET的特异性,超过了非芳香族塑料。我们的发现表明,S1和S3亚位点的结合之间的平衡受到协同突变的影响,是催化活性的基础。该平衡显示与实验获得的kcat/Km值呈正相关:WTTfCut2 Understanding all parameters contributing to enzyme activity is crucial in enzyme catalysis. For enzymatic PET degradation, this involves examining the formation of the enzyme-PET complex. In IsPETase (WT), a PET-degrading enzyme from Ideonellasakaiensis, mutating two non-catalytic residues (DM) significantly enhances activity. Such mutations, depending on their position in the tertiary structure, fine-tune enzyme function. However, detailed molecular insights into these mutations\' structurefunction relationship for PET degradation are lacking. This study characterizes IsPETase\'s catalytic ability compared to WT TfCut2 using molecular dynamics simulations and quantum mechanical methods. We explore the conformational landscape of the enzyme-PET complex and quantify residue-wise interaction energy. Notably, aromatic and hydrophobic residues Tyr, Trp, and Ile in the catalytic subsite S1, and aromatic Phe and polar Asn in the anchoring subsite S3, crucially optimize PET binding. These residues enhance PET specificity over non-aromatic plastics. Our findings suggest that the balance between binding at subsite S1 and subsite S3, which is influenced by cooperative mutations, underlies catalytic activity. This balance shows a positive correlation with experimentally obtained kcat/Km values: WT TfCut2 < WT IsPETase << DM IsPETase.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Cdc14磷酸酶在结构和机械上与蛋白质酪氨酸磷酸酶(PTP)相关,但对主要由细胞周期蛋白依赖性激酶沉积的磷酸Ser-Pro-X-Lys/Arg位点进化出独特的特异性。这种专业化在真核生物中广泛保守。Cdc14活性位点的进化重新配置以选择性地适应phoSer-Pro可能需要对规范的PTP催化循环进行修饰。在研究酿酒酵母Cdc14时,我们在无序的C端发现了一个短序列,催化域的远端,模拟最佳底物。动力学分析表明,这种假底物结合活性位点并强烈刺激限速磷酸酶水解,我们将其命名为“类似底物的催化增强剂”(SLiCE)。SLiCE基序在所有Dikarya真菌Cdc14直向同源物中都有发现,并且含有不变的谷氨酰胺,我们建议通过类似基材的接触来定位,以帮助水解水的取向,类似于Cdc14缺乏的其他PTP中的保守活性位点谷氨酰胺。AlphaFold2预测显示,脊椎动物Cdc14直向同源物包含与活性位点结合的保守的C末端α螺旋。尽管显然与真菌序列无关,该基序还使底物状接触,并在催化袋中具有不变的谷氨酰胺。改变人Cdc14A和Cdc14B中的这些残基表明其通过与真菌基序相同的机制起作用。然而,真菌和脊椎动物SLiCE基序在功能上不可互换,阐明催化过程中潜在的活性位点差异。最后,我们证明真菌SLiCE基序是Cdc14活性的磷酸化调控靶标。我们的研究揭示了Cdc14磷酸酶中异常刺激的假底物基序的进化。
    Cdc14 phosphatases are related structurally and mechanistically to protein tyrosine phosphatases (PTP) but evolved a unique specificity for phosphoSer-Pro-X-Lys/Arg sites primarily deposited by cyclin-dependent kinases. This specialization is widely conserved in eukaryotes. The evolutionary reconfiguration of the Cdc14 active site to selectively accommodate phosphoSer-Pro likely required modification to the canonical PTP catalytic cycle. While studying Saccharomyces cerevisiae Cdc14 we discovered a short sequence in the disordered C-terminus, distal to the catalytic domain, that mimics an optimal substrate. Kinetic analyses demonstrated this pseudosubstrate binds the active site and strongly stimulates rate-limiting phosphoenzyme hydrolysis, and we named it \"substrate-like catalytic enhancer\" (SLiCE). The SLiCE motif is found in all Dikarya fungal Cdc14 orthologs and contains an invariant glutamine, which we propose is positioned via substrate-like contacts to assist orientation of the hydrolytic water, similar to a conserved active site glutamine in other PTPs that Cdc14 lacks. AlphaFold2 predictions revealed vertebrate Cdc14 orthologs contain a conserved C-terminal alpha helix bound to the active site. Although apparently unrelated to the fungal sequence, this motif also makes substrate-like contacts and has an invariant glutamine in the catalytic pocket. Altering these residues in human Cdc14A and Cdc14B demonstrated that it functions by the same mechanism as the fungal motif. However, the fungal and vertebrate SLiCE motifs were not functionally interchangeable, illuminating potential active site differences during catalysis. Finally, we show that the fungal SLiCE motif is a target for phosphoregulation of Cdc14 activity. Our study uncovered evolution of an unusual stimulatory pseudosubstrate motif in Cdc14 phosphatases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    酶以惊人的效率和选择性将底物转化为产物,因此在生物技术和药物应用中具有巨大的潜力。然而,它们的催化循环的细节以及围绕酶促反应过程的区域选择性和化学选择性的起源仍然未知,这使得酶工程及其在生物技术中的应用具有挑战性。计算模型可以帮助现场的实验工作,并建立影响反应速率和产物分布的因素。建模中一种流行的方法是使用酶的量子力学簇模型,该模型考虑了酶活性位点的第一和第二配位球。这些QM集群模型被广泛应用,但结果通常取决于模型的选择和选择。在这里,我们表明,QM集群模型可以产生非常准确的结果,重现实验产品分布和自由能的活化能,认为使用了>300个原子的大簇模型。在本教程回顾中,我们给出了有关QM聚类方法的设置和应用的一般指南,并讨论了其准确性和可重复性。最后,介绍了含金属酶的几个代表性QM集群模型示例,这凸显了这种方法的力量。
    Enzymes turnover substrates into products with amazing efficiency and selectivity and as such have great potential for use in biotechnology and pharmaceutical applications. However, details of their catalytic cycles and the origins surrounding the regio- and chemoselectivity of enzymatic reaction processes remain unknown, which makes the engineering of enzymes and their use in biotechnology challenging. Computational modelling can assist experimental work in the field and establish the factors that influence the reaction rates and the product distributions. A popular approach in modelling is the use of quantum mechanical cluster models of enzymes that take the first- and second coordination sphere of the enzyme active site into consideration. These QM cluster models are widely applied but often the results are dependent on model choice and selection. Herein, we show that QM cluster models can produce highly accurate results that reproduce experimental product distributions and free energies of activation, regarded that large cluster models with >300 atoms are used. In this tutorial review, we give general guidelines on the set-up and applications of the QM cluster method and discuss its accuracy and reproducibility. Finally, several representative QM cluster model examples on metal-containing enzymes are presented, which highlight the strength of the approach.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    环丙烷脂肪酸合酶(CFAS)催化细菌膜内不饱和脂肪酸转化为环丙烷脂肪酸(CFA)。这种修饰改变了膜的生物物理特性,并且与几种人类病原体的毒力相关。尽管CFAS酶在调节细菌应激反应中起着核心作用,CFAS酶家族的机制特性和CFA生物合成的后果在大多数细菌中仍未表征。我们报告了铜绿假单胞菌(PA)的CFAS酶的第一个特征,PA是一种机会性人类病原体,具有复杂的膜生物学特性,通常与抗菌素耐药性和对各种外部应激源的高耐受性有关。我们证明了CFA是由PA中的单个酶产生的,并且cfas基因表达在向稳定期过渡和对氧化应激的反应中上调。PA脂质提取物的分析显示,随着PA细胞进入静止期,CFA产量大幅增加,并有助于确定体外测定的最佳膜组成。纯化的PA-CFAS酶形成稳定的同二聚体,并优先修饰磷脂酰甘油脂质底物和具有较高含量不饱和酰基链的膜。跨细菌门的生物信息学分析显示CFAS酶的脂质结合域内高度不同的氨基酸序列,也许表明不同直系同源物之间具有不同的膜结合特性。本工作为进一步鉴定铜绿假单胞菌中的CFAS和研究不同细菌的CFAS酶的功能差异奠定了重要的基础。
    Cyclopropane fatty acid synthases (CFAS) catalyze the conversion of unsaturated fatty acids to cyclopropane fatty acids (CFAs) within bacterial membranes. This modification alters the biophysical properties of membranes and has been correlated with virulence in several human pathogens. Despite the central role played by CFAS enzymes in regulating bacterial stress responses, the mechanistic properties of the CFAS enzyme family and the consequences of CFA biosynthesis remain largely uncharacterized in most bacteria. We report the first characterization of the CFAS enzyme from Pseudomonas aeruginosa (PA) - an opportunistic human pathogen with complex membrane biology that is frequently associated with antimicrobial resistance and high tolerance to various external stressors. We demonstrate that CFAs are produced by a single enzyme in PA and that cfas gene expression is upregulated during the transition to stationary phase and in response to oxidative stress. Analysis of PA lipid extracts reveal a massive increase in CFA production as PA cells enter stationary phase and help define the optimal membrane composition for in vitro assays. The purified PA-CFAS enzyme forms a stable homodimer and preferentially modifies phosphatidylglycerol lipid substrates and membranes with a higher content of unsaturated acyl chains. Bioinformatic analysis across bacterial phyla shows highly divergent amino acid sequences within the lipid binding domain of CFAS enzymes, perhaps suggesting distinct membrane binding properties among different orthologues. This work lays an important foundation for further characterization of CFAS in Pseudomonas aeruginosa and for examining the functional differences between CFAS enzymes from different bacteria.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    糖基化是植物用来微调小分子代谢物的特性以影响其生物活性的主要策略。运输,和存储。它在生物技术和医学中也很重要,因为许多糖苷被用于人类健康。小分子糖基化主要由家族1糖基转移酶进行。这里,我们报告了UGT95A1的结构和生化研究,UGT95A1是一种来自药霉的家族1GT酶,类黄酮受体底物木犀草素的3'-O位置异常的区域特异性。我们获得了apo晶体结构,以帮助驱动一系列结合位点突变体的分析,揭示了虽然大多数残基对突变具有耐受性,关键残基M145和D464对于总体糖基化活性是重要的。有趣的是,E347对于保持3'-O糖基化的强烈偏好至关重要,而R462可以突变以增加区域选择性。在同源酶中进一步证实了区域选择性的结构决定因素。我们的研究还表明,这种酶含有大量的,高度动态,无序的地区。我们表明,虽然蛋白质的大多数无序区域对催化几乎没有影响,所研究的同源物之间保守的无序区域对酶的整体效率和区域特异性都很重要。该报告代表了对具有独特底物区域特异性的家族1GT酶的全面深入分析,并可能为酶功能预测和工程提供基础。
    Glycosylation is a predominant strategy plants employ to fine-tune the properties of small molecule metabolites to affect their bioactivity, transport, and storage. It is also important in biotechnology and medicine as many glycosides are utilized in human health. Small molecule glycosylation is largely carried out by family 1 glycosyltransferases. Here, we report a structural and biochemical investigation of UGT95A1, a family 1 GT enzyme from Pilosella officinarum that exhibits a strong, unusual regiospecificity for the 3\'-O position of flavonoid acceptor substrate luteolin. We obtained an apo crystal structure to help drive the analyses of a series of binding site mutants, revealing that while most residues are tolerant to mutations, key residues M145 and D464 are important for overall glycosylation activity. Interestingly, E347 is crucial for maintaining the strong preference for 3\'-O glycosylation, while R462 can be mutated to increase regioselectivity. The structural determinants of regioselectivity were further confirmed in homologous enzymes. Our study also suggests that the enzyme contains large, highly dynamic, disordered regions. We showed that while most disordered regions of the protein have little to no implication in catalysis, the disordered regions conserved among investigated homologues are important to both the overall efficiency and regiospecificity of the enzyme. This report represents a comprehensive in-depth analysis of a family 1 GT enzyme with a unique substrate regiospecificity and may provide a basis for enzyme functional prediction and engineering.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    核酸加工酶使用双Mg2+离子基序来促进磷酸二酯键的形成和裂解。然而,最近的证据表明,在蛋白质和RNA依赖性酶的催化结构周围存在空间保守的第二壳阳离子。RNA酶线粒体RNA加工(MRP)复合物,在A3切割位点切割核糖体RNA(rRNA)前体,产生5.8SrRNA的成熟5'-末端,催化核心中的宿主是一个非典型的Mg2+离子,除了形成典型催化基序的离子。这里,我们使用RNaseMRP的偏量子经典分子动力学模拟发现第三个Mg2离子抑制了催化过程。相反,它的置换有利于第二壳单价K离子,通过形成特定的氢键网络来介导必需的质子转移步骤,从而促进了磷酸二酯键的裂解。这项研究指出,瞬时K离子直接参与磷酸二酯键的催化裂解,并暗示阳离子运输是核酸加工酶和核酶的一般机制。
    Nucleic acid processing enzymes use a two-Mg2+-ion motif to promote the formation and cleavage of phosphodiester bonds. Yet, recent evidence demonstrates the presence of spatially conserved second-shell cations surrounding the catalytic architecture of proteinaceous and RNA-dependent enzymes. The RNase mitochondrial RNA processing (MRP) complex, which cleaves the ribosomal RNA (rRNA) precursor at the A3 cleavage site to yield mature 5\'-end of 5.8S rRNA, hosts in the catalytic core one atypically-located Mg2+ ion, in addition to the ions forming the canonical catalytic motif. Here, we employ biased quantum classical molecular dynamics simulations of RNase MRP to discover that the third Mg2+ ion inhibits the catalytic process. Instead, its displacement in favour of a second-shell monovalent K+ ion propels phosphodiester bond cleavage by enabling the formation of a specific hydrogen bonding network that mediates the essential proton transfer step. This study points to a direct involvement of a transient K+ ion in the catalytic cleavage of the phosphodiester bond and implicates cation trafficking as a general mechanism in nucleic acid processing enzymes and ribozymes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    异戊二烯焦磷酸盐在各种必需的非甾醇和甾醇生物分子的合成中起着至关重要的作用,并且是蛋白质翻译后异戊二烯化的底物。使特定的锚定细胞膜。异戊二烯焦磷酸盐的水解将是调节其水平的一种手段,下游产品,和蛋白质异戊二烯化。虽然已经描述了来自植物的NUDIX水解酶催化异戊二烯焦磷酸盐的水解,在动物中具有这种功能的同源酶尚未被报道。在这项研究中,我们筛选了一组广泛的人NUDIX水解酶水解异戊二烯焦磷酸盐的活性。我们发现人核苷酸三磷酸二磷酸酶NUDT15和8-氧代-dGDP磷酸酶NUDT18可有效催化几种生理相关的异戊二烯焦磷酸盐的水解。值得注意的是,我们证明香叶基焦磷酸是NUDT18的出色底物,催化效率为2.1×105m-1·s-1,因此使其成为迄今为止NUDT18确定的最佳底物。同样,香叶基焦磷酸被证明是NUDT15的最佳异戊二烯焦磷酸底物,催化效率为4.0×104M-1·s-1。NUDT15和NUDT18催化的异戊二烯焦磷酸水解的LC-MS分析揭示了相应的单磷酸盐和无机磷酸盐的生成。此外,我们解决了NUDT15的晶体结构与水解产物磷酸香叶酯的复合物,分辨率为1.70。该结构揭示了活性位点很好地容纳疏水性类异戊二烯部分并帮助鉴定关键结合残基。我们的发现暗示异戊二烯焦磷酸盐是NUDT15和NUDT18的内源性底物,表明它们参与动物异戊二烯焦磷酸盐的代谢。
    Isoprene pyrophosphates play a crucial role in the synthesis of a diverse array of essential nonsterol and sterol biomolecules and serve as substrates for posttranslational isoprenylation of proteins, enabling specific anchoring to cellular membranes. Hydrolysis of isoprene pyrophosphates would be a means to modulate their levels, downstream products, and protein isoprenylation. While NUDIX hydrolases from plants have been described to catalyze the hydrolysis of isoprene pyrophosphates, homologous enzymes with this function in animals have not yet been reported. In this study, we screened an extensive panel of human NUDIX hydrolases for activity in hydrolyzing isoprene pyrophosphates. We found that human nucleotide triphosphate diphosphatase NUDT15 and 8-oxo-dGDP phosphatase NUDT18 efficiently catalyze the hydrolysis of several physiologically relevant isoprene pyrophosphates. Notably, we demonstrate that geranyl pyrophosphate is an excellent substrate for NUDT18, with a catalytic efficiency of 2.1 × 105 m-1·s-1, thus making it the best substrate identified for NUDT18 to date. Similarly, geranyl pyrophosphate proved to be the best isoprene pyrophosphate substrate for NUDT15, with a catalytic efficiency of 4.0 × 104 M-1·s-1. LC-MS analysis of NUDT15 and NUDT18 catalyzed isoprene pyrophosphate hydrolysis revealed the generation of the corresponding monophosphates and inorganic phosphate. Furthermore, we solved the crystal structure of NUDT15 in complex with the hydrolysis product geranyl phosphate at a resolution of 1.70 Å. This structure revealed that the active site nicely accommodates the hydrophobic isoprenoid moiety and helped identify key binding residues. Our findings imply that isoprene pyrophosphates are endogenous substrates of NUDT15 and NUDT18, suggesting they are involved in animal isoprene pyrophosphate metabolism.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    硫胺素二磷酸(ThDP)结合基序,以规范的GDG(X)24-27N序列为特征,在ThDP依赖性酶中高度保守。我们研究了ThDP依赖性裂解酶(来自Janthinobacteriumsp。HH01)用不寻常的半胱氨酸(C458)代替该基序的第一个甘氨酸。我们发现JanthE具有很高的底物混杂性,接受长脂族α-酮酸作为供体。位阻芳香醛或非活化酮是受体底物,获得各种仲醇和叔醇作为分裂产物。以1.9µ的分辨率解析的晶体结构表明,C458并不像以前认为的典型甘氨酸那样主要参与辅因子结合。相反,它协调甲硫氨酸406,从而确保活性位点和酶活性的完整性。我们进一步确定了由丙酮酸和2-氧代丁酸酯在脱羧前形成的长期寻求的真正的四面体中间体,并解开了原子细节,以使它们在活性位点稳定。总的来说,我们解开了ThDP结合基序的第一个残基的意想不到的作用,并解开了能够进行有价值的嵌合体反应的裂解酶家族。
    The thiamine diphosphate (ThDP)-binding motif, characterized by the canonical GDG(X)24-27N sequence, is highly conserved among ThDP-dependent enzymes. We investigated a ThDP-dependent lyase (JanthE from Janthinobacterium sp. HH01) with an unusual cysteine (C458) replacing the first glycine of this motif. JanthE exhibits a high substrate promiscuity and accepts long aliphatic α-keto acids as donors. Sterically hindered aromatic aldehydes or non-activated ketones are acceptor substrates, giving access to a variety of secondary and tertiary alcohols as carboligation products. The crystal structure solved at a resolution of 1.9 Å reveals that C458 is not primarily involved in cofactor binding as previously thought for the canonical glycine. Instead, it coordinates methionine 406, thus ensuring the integrity of the active site and the enzyme activity. In addition, we have determined the long-sought genuine tetrahedral intermediates formed with pyruvate and 2-oxobutyrate in the pre-decarboxylation states and deciphered the atomic details for their stabilization in the active site. Collectively, we unravel an unexpected role for the first residue of the ThDP-binding motif and unlock a family of lyases that can perform valuable carboligation reactions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    添加O-连接的N-乙酰葡糖胺(O-GlcNAc)是活性分子的重要修饰,如蛋白质,碳水化合物,和天然产品。然而,由于缺乏糖基转移酶,用GlcNAc修饰的萜类糖苷衍生物的合成仍然是一项具有挑战性的任务,催化GlcNAc向萜类化合物转移的关键酶。在这项研究中,我们证明了酶突变体UGT74AC1T79Y/L48M/R28H/L109I/S15A/M76L/H47R将GlcNAc从尿苷二磷酸(UDP)-GlcNAc有效地转移到多种萜类化合物中。这种强大的酶被用来合成萜类化合物的GlcNAc修饰衍生物,包括莫格罗,甜菊醇,穿心莲内酯,原人参二醇,甘草次酸,熊果酸,和桦木酸的第一次。为了解开UDP-GlcNAc识别的机制,我们确定了与UDP-GlcNAc复合的灭活突变体UGT74AC1His18A/Asp111A的X射线晶体结构,分辨率为1.66。通过分子动力学模拟和活性分析,我们揭示了UDP-GlcNAc识别的分子机制和催化重要的氨基酸。总的来说,这项研究不仅提供了一种能够使天然产物糖多样化的有效生物催化剂,而且还阐明了糖基转移酶识别UDP-GlcNAc的结构基础。
    The addition of the O-linked N-acetylglucosamine (O-GlcNAc) is a significant modification for active molecules, such as proteins, carbohydrates, and natural products. However, the synthesis of terpenoid glycoside derivatives decorated with GlcNAc remains a challenging task due to the absence of glycosyltransferases, key enzymes for catalyzing the transfer of GlcNAc to terpenoids. In this study, we demonstrated that the enzyme mutant UGT74AC1T79Y/L48M/R28H/L109I/S15A/M76L/H47R efficiently transferred GlcNAc from uridine diphosphate (UDP)-GlcNAc to a variety of terpenoids. This powerful enzyme was employed to synthesize GlcNAc-decorated derivatives of terpenoids, including mogrol, steviol, andrographolide, protopanaxadiol, glycyrrhetinic acid, ursolic acid, and betulinic acid for the first time. To unravel the mechanism of UDP-GlcNAc recognition, we determined the X-ray crystal structure of the inactivated mutant UGT74AC1His18A/Asp111A in complex with UDP-GlcNAc at a resolution of 1.66 Å. Through molecular dynamic simulation and activity analysis, we revealed the molecular mechanism and catalytically important amino acids directly involved in the recognition of UDP-GlcNAc. Overall, this study not only provided a potent biocatalyst capable of glycodiversifying natural products but also elucidated the structural basis for UDP-GlcNAc recognition by glycosyltransferases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:锰过氧化物酶(MnPs)是,与木质素过氧化物酶和通用过氧化物酶一起,白腐真菌分泌的酶促机制的关键元素降解木质素,从而在植物细胞壁中提供获得纤维素和半纤维素的途径。最近对52种蘑菇物种的基因组分析显示,存在新的MnP亚家族,这些亚家族在构成锰氧化位点的氨基酸残基上有所不同。在这个模拟分析之后,需要进行全面的结构-功能研究,以了解这些酶是如何工作的,并有助于转化木质素大分子。
    结果:属于最近分类为MnP-DGD和MnP-ESD的亚家族的两个MnP-分别称为Ape-MnP1和Cst-MnP1-被鉴定为主要的过氧化物酶。在木质纤维素底物上生长时,Agaricales物种Agrocubepiades和Cyathusstriatus分泌的。异源表达和体外激活后,它们的生化特性证实这些酶是有活性的MnPs。然而,晶体结构和诱变研究表明,锰配位球与初始分类后的预期不同。具体来说,发现Ape-MnP1的C末端尾部的谷氨酰胺残基(Gln333)与锰结合有关,与Asp35和Asp177一起,而Cst-MnP1仅计数两种氨基酸(Glu36和Asp176),而不是三个,起到MnP的作用。这些发现导致将这些亚家族重命名为MnP-DDQ和MnP-ED,并重新评估其进化起源。两种酶都能够直接氧化木质素衍生的酚类化合物,如其他短MnP所示。重要的是,尺寸排阻色谱分析表明,在锰的存在下,两种酶都会引起聚合木质素的变化,表明它们在木质纤维素转化中的相关性。
    结论:了解担子菌降解木质素的机制对于理解自然界中的碳循环和设计用于植物生物质工业用途的生物技术工具特别重要。这里,我们提供了蘑菇中存在的两个新的MnP亚家族的第一个结构-功能表征,阐明参与催化的主要残基,并证明它们修饰木质素大分子的能力。
    BACKGROUND: Manganese peroxidases (MnPs) are, together with lignin peroxidases and versatile peroxidases, key elements of the enzymatic machineries secreted by white-rot fungi to degrade lignin, thus providing access to cellulose and hemicellulose in plant cell walls. A recent genomic analysis of 52 Agaricomycetes species revealed the existence of novel MnP subfamilies differing in the amino-acid residues that constitute the manganese oxidation site. Following this in silico analysis, a comprehensive structure-function study is needed to understand how these enzymes work and contribute to transform the lignin macromolecule.
    RESULTS: Two MnPs belonging to the subfamilies recently classified as MnP-DGD and MnP-ESD-referred to as Ape-MnP1 and Cst-MnP1, respectively-were identified as the primary peroxidases secreted by the Agaricales species Agrocybe pediades and Cyathus striatus when growing on lignocellulosic substrates. Following heterologous expression and in vitro activation, their biochemical characterization confirmed that these enzymes are active MnPs. However, crystal structure and mutagenesis studies revealed manganese coordination spheres different from those expected after their initial classification. Specifically, a glutamine residue (Gln333) in the C-terminal tail of Ape-MnP1 was found to be involved in manganese binding, along with Asp35 and Asp177, while Cst-MnP1 counts only two amino acids (Glu36 and Asp176), instead of three, to function as a MnP. These findings led to the renaming of these subfamilies as MnP-DDQ and MnP-ED and to re-evaluate their evolutionary origin. Both enzymes were also able to directly oxidize lignin-derived phenolic compounds, as seen for other short MnPs. Importantly, size-exclusion chromatography analyses showed that both enzymes cause changes in polymeric lignin in the presence of manganese, suggesting their relevance in lignocellulose transformation.
    CONCLUSIONS: Understanding the mechanisms used by basidiomycetes to degrade lignin is of particular relevance to comprehend carbon cycle in nature and to design biotechnological tools for the industrial use of plant biomass. Here, we provide the first structure-function characterization of two novel MnP subfamilies present in Agaricales mushrooms, elucidating the main residues involved in catalysis and demonstrating their ability to modify the lignin macromolecule.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号