Electron transfer

电子转移
  • 文章类型: Journal Article
    微生物氧化和Sb(III)的机理是生物地球化学循环中的关键控制元素。一种新型锑氧化细菌,早期吸引了产气克雷伯氏菌HC10,并揭示了细胞外代谢物是驱动Sb氧化的主要部分。然而,胞外代谢物驱动Sb氧化过程和机制之间的联系仍然难以捉摸。这里,模型酚和醌化合物,即,蒽醌-2,6-二磺酸盐(AQDS)和对苯二酚(HYD),代表K.aerogenesHC10分泌的细胞外氧化剂,被选择用于进一步研究Sb(III)氧化机理。N2吹扫和自由基猝灭表明,在代谢物反应体系中,氧诱导氧化占Sb(III)的36.78%,羟基自由基(·OH)占15.52%。·OH和H2O2是Sb氧化的主要驱动因素。自由基猝灭,甲醇纯化和电子顺磁共振(EPR)分析表明,·OH,超氧自由基(O2•-)和半醌(SQ4-)是酚类诱导氧化过程的反应中间体。酚类诱导的ROS是代谢产物中的主要氧化剂之一。循环伏安法(CV)表明,醌的电子转移也介导了Sb(III)的氧化。部分Sb(V)通过在孵育系统中形成次级含Sb(V)的矿物镁铁矿[NaSb(OH)6]而被清除。我们的研究证明了Sb的氧化解毒和矿化的微生物作用,为Sb污染土壤的生化修复提供了科学依据。
    Microbial oxidation and the mechanism of Sb(III) are key governing elements in biogeochemical cycling. A novel Sb oxidizing bacterium, Klebsiella aerogenes HC10, was attracted early and revealed that extracellular metabolites were the main fractions driving Sb oxidation. However, linkages between the extracellular metabolite driven Sb oxidation process and mechanism remain elusive. Here, model phenolic and quinone compounds, i.e., anthraquinone-2,6-disulfonate (AQDS) and hydroquinone (HYD), representing extracellular oxidants secreted by K. aerogenes HC10, were chosen to further study the Sb(III) oxidation mechanism. N2 purging and free radical quenching showed that oxygen-induced oxidation accounted for 36.78% of Sb(III) in the metabolite reaction system, while hydroxyl free radicals (·OH) accounted for 15.52%. ·OH and H2O2 are the main driving factors for Sb oxidation. Radical quenching, methanol purification and electron paramagnetic resonance (EPR) analysis revealed that ·OH, superoxide radical (O2•-) and semiquinone (SQ-•) were reactive intermediates of the phenolic induced oxidation process. Phenolic-induced ROS are one of the main oxidants in metabolites. Cyclic voltammetry (CV) showed that electron transfer of quinone also mediated Sb(III) oxidation. Part of Sb(V) was scavenged by the formation of the secondary Sb(V)-bearing mineral mopungite [NaSb(OH)6] in the incubation system. Our study demonstrates the microbial role of oxidation detoxification and mineralization of Sb and provides scientific references for the biochemical remediation of Sb-contaminated soil.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    亚硝酸铜还原酶(CuNiRs)的催化活性具有很强的pH依赖性。可以通过使用MSOX串行晶体学方法从晶体的同一点串行记录多个结构(帧)来获得结构电影。该方法已与在线单晶光谱法结合使用,以捕获两种根瘤菌中CuNiRs周转过程中伴随的pH依赖性结构变化。结构电影,通过X射线产生的光电子对1型铜位点(T1Cu)进行氧化还原活化,已在低(高酶活性)和高(低酶活性)pH下获得无底物和底物结合状态。在低pH值,在剂量为3MGy(框架5)并完全漂白T1Cu配体到金属的电荷转移(LMCT)455nm之后,在催化2型铜位点(T2Cu)上完成了产物一氧化氮(NO)的形成(S(σ)Cys→T1Cu2),这本身就表明了质子耦合电子转移(PCET)从T1Cu到T2Cu的电子路线。相反,在高pH下,光谱的变化相对较小,NO的形成仅在以后的帧中观察到(Br2DNiR中的第15帧,10MGy),与催化所需的PCET损失一致。这伴随着催化AspCAT残留物的脱羧,二氧化碳被困在催化袋中。
    Copper nitrite reductases (CuNiRs) exhibit a strong pH dependence of their catalytic activity. Structural movies can be obtained by serially recording multiple structures (frames) from the same spot of a crystal using the MSOX serial crystallography approach. This method has been combined with on-line single crystal optical spectroscopy to capture the pH-dependent structural changes that accompany during turnover of CuNiRs from two Rhizobia species. The structural movies, initiated by the redox activation of a type-1 copper site (T1Cu) via X-ray generated photoelectrons, have been obtained for the substrate-free and substrate-bound states at low (high enzymatic activity) and high (low enzymatic activity) pH. At low pH, formation of the product nitric oxide (NO) is complete at the catalytic type-2 copper site (T2Cu) after a dose of 3 MGy (frame 5) with full bleaching of the T1Cu ligand-to-metal charge transfer (LMCT) 455 nm band (S(σ)Cys → T1Cu2+) which in itself indicates the electronic route of proton-coupled electron transfer (PCET) from T1Cu to T2Cu. In contrast at high pH, the changes in optical spectra are relatively small and the formation of NO is only observed in later frames (frame 15 in Br2DNiR, 10 MGy), consistent with the loss of PCET required for catalysis. This is accompanied by decarboxylation of the catalytic AspCAT residue, with CO2 trapped in the catalytic pocket.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    大多数破坏/形成键的氧化还原过程都涉及净2e-变化,许多与质子耦合。然而,大多数质子耦合电子转移(PCET)研究集中于1e-/1H+反应。这里报道的是经历可调的2e-/2H+氧化还原变化的分子模型家族。已合成配合物[(X2bpy)RuII(en*)2](PF6)2和[(X2bpy)RuIV(en*-H)2](PF6)2,bpy=2,2'-联吡啶,4'-取代度X=-NMe2,-OMe,-我,-H,-CF3;和en*=2,3-二甲基-2,3-丁二胺。它们的特征是IR,UV-vis,和核磁共振波谱,XRD,电化学,质谱,DFT和(TD)DFT计算。在bpy配体的4,4'-位置引入吸电子和供体基团会影响配合物的氧化还原电位,pKa\'s,和en*配体中N-H键的键解离自由能(BDFE)。整个2e-/2H+PCET的平均BDFE跨度超过5kcal/mol。值得注意的是,这些复合物在扩展的范围内都显示出明显的电位反转,ΔpKa>25个单位,ΔE0>1.4V。尽管有bpy取代的电子影响,其通过在Ru中心的dπ分子轨道上的反式效应调节N-H性质,几个键分开。这项工作中提出的实验和计算结果支持电子和质子之间存在强耦合,用于2e-/2H+转移反应性的建模见解。
    Most redox processes that break/form bonds involve net 2e- changes, and many are coupled to protons. Yet most proton-coupled electron transfer (PCET) studies focus on 1e-/1H+ reactions. Reported here is a family of molecular models that undergo tunable 2e-/2H+ redox changes. Complexes [(X2bpy)RuII(en*)2](PF6)2 and [(X2bpy)RuIV(en*-H)2](PF6)2 have been synthesized with bpy = 2,2\'-bipyridine with 4,4\'-subtitutions X = -NMe2, -OMe, -Me, -H, -CF3; and en* = 2,3-dimethyl-2,3-butanediamine. They have been characterized by IR, UV-vis, and NMR spectroscopies, XRD, electrochemistry, mass spectrometry, DFT and (TD)DFT computations. The introduction of electron-withdrawing and donating groups at the 4,4\'-position of the bpy ligand affects the complexes\' redox potentials, pKa\'s, and Bond Dissociation Free Energies (BDFEs) of the N-H bonds in the en* ligands. The average BDFEs for the overall 2e-/2H+ PCET span over 5 kcal/mol. Notably, these complexes all show marked potential inversion over an extended range, ΔpKa > 25 units and ΔE0 > 1.4 V. Potential inversion remains despite the electronic influence of bpy\'s substitutions which regulate N-H properties several bonds apart by trans-effect over dπ-molecular orbitals at Ru-center. The experimental and computational results presented in this work support the presence of strong coupling between electrons and protons, for modelling insights of 2e-/2H+ transfer reactivity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    认识到环境中普遍存在氧化铝矿物和低分子量有机酸(LMWOA),这项研究解决了涉及这两种成分和Fe(II)的三元系统中相互作用机制的差距。具体来说,研究了LMWOAs对γ-Al2O3矿物表面Fe(II)氧化过程中羟基自由基(•OH)产生和铁物种转化的影响。结果表明,向γ-Al2O3/Fe(II)系统(28.1μM)中添加0.5mM草酸盐(OA)或柠檬酸盐(CA)可显着提高•OH的产量1.9倍(51.9μM)和1.3倍(36.2μM),分别,而琥珀酸(SA)表现出有限的作用(30.7μM)。将OA浓度提高到5mM进一步促进•OH产量在24小时后达到125.0μM。更深入的分析显示,CA通过单电子和双电子转移机制促进了吸附的Fe(II)的溶解及其随后被O2的氧化,而OA增强了溶解的Fe(II)的吸附,并提高了H2O2生产的双电子转移效率。此外,LMWOAs的存在有利于形成结晶度差的铁矿物,例如水铁矿和锂铁矿,而不是结晶良好的形式,例如针铁矿。各种LMWOAs对Fe(II)氧化和•OH生成的不同影响强调了它们在矿物表面氧化还原过程中的独特作用,因此调节典型污染物如苯酚的环境命运。
    Recognizing the pervasive presence of alumina minerals and low-molecular-weight organic acids (LMWOAs) in the environment, this study addressed the gap in the interaction mechanisms within the ternary system involving these two components and Fe(II). Specifically, the impacts of LMWOAs on hydroxyl radicals (•OH) production and iron species transformation during Fe(II) oxidation on γ-Al2O3 mineral surface were examined. Results demonstrated that adding 0.5 mM oxalate (OA) or citrate (CA) to the γ-Al2O3/Fe(II) system (28.1 μM) significantly enhanced •OH production by 1.9-fold (51.9 μM) and 1.3-fold (36.2 μM), respectively, whereas succinate (SA) exhibited limited effect (30.7 μM). Raising OA concentration to 5 mM further promoted •OH yield to 125.0 μM after 24 h. Deeper analysis revealed that CA facilitated the dissolution of adsorbed Fe(II) and its subsequent oxygenation by O2 through both one- and two-electron transfer mechanisms, whereas OA enhanced the adsorption of dissolved Fe(II) and more efficient two-electron transfer for H2O2 production. Additionally, LMWOAs presence favored the formation of iron minerals with poor crystallinity like ferrihydrite and lepidocrocite rather than well-crystallized forms such as goethite. The distinct impacts of various LMWOAs on Fe(II) oxidation and •OH generation underscore their unique roles in the redox processes at mineral surface, consequently modulating the environmental fate of prototypical pollutants like phenol.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    含peridinin的鞭毛蛋白叶绿体的基因组具有非常不寻常的组织。这些基因组是高度分散的,并且大大减少,与大多数常见的叶绿体基因互补迁移到细胞核。鞭毛状叶绿体突出了在许多其他细胞器基因组中发现的不同程度的进化变化。其中包括绿藻Boodlea和其他紫菜的叶绿体基因组,以及吸血和咀嚼虱子的线粒体基因组,一种寄生植物,红藻和Stylonematphyceae的其他成员,双粒鞭毛虫,还有一些Cnidaria.对剩余叶绿体基因组的编码含量的考虑表明,细胞器可能优先保留在启动复合物组装中重要的蛋白质的基因,线粒体也是如此。我们提出了一个新的原则,组装控制(COCOA)的共同位置,表明在细胞器中保留这些基因的重要性。这增加了,但不会无效,多亚单位完成原则的现有假设,用于氧化还原调节(CORR)的共定位和通过合成上位药(CES)进行控制。
    The genomes of peridinin-containing dinoflagellate chloroplasts have a very unusual organisation. These genomes are highly fragmented and greatly reduced, with most of the usual complement of chloroplast genes relocated to the nucleus. Dinoflagellate chloroplasts highlight evolutionary changes that are found to varying extents in a number of other organelle genomes. These include the chloroplast genome of the green alga Boodlea and other Cladophorales, and the mitochondrial genomes of blood-sucking and chewing lice, the parasitic plant Rhopalocnemis phalloides, the red alga Rhodosorus marinus and other members of the Stylonematophyceae, diplonemid flagellates, and some Cnidaria. Consideration of the coding content of the remnant chloroplast genomes indicates that organelles may preferentially retain genes for proteins important in initiating assembly of complexes, and the same is largely true for mitochondria. We propose a new principle, of CO-location for COntrol of Assembly (COCOA), indicating the importance of retaining these genes in the organelle. This adds to, but does not invalidate, the existing hypotheses of the multisubunit completion principle, CO-location for Redox Regulation (CORR) and Control by Epistasy of Synthesis (CES).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    B掺杂的Pd基(PdB)催化剂中的强配体效应使其成为构建具有高功率密度和出色稳定性的甲酸燃料电池(FAFCs)的有希望的阳极。然而,由于从B到Pd的电子转移(ET),在该合金体系中氧化势垒的增强是不可避免的。在这项研究中,采用氢掺杂策略来打开PdB化合物中的电荷自由度,并通过抑制ET过程来提高其甲酸氧化反应(FAOR)活性。所得的氢掺杂PdB(PdBH)具有高达1.2Amg-1Pd的超高质量活性,是PdB催化剂的3.23倍和Pd黑的9.55倍。详细的实验和理论研究表明,间隙氢导致Pd周围的轨道杂化增强和电子密度降低。这种优化的配体效应削弱了一氧化碳的吸附并增加了PdBH的直接途径偏好,导致其对FAOR的出色催化活性。这种高性能氢掺杂PdB催化剂的开发是朝着构建先进的轻元素共掺杂金属催化剂迈出的重要一步。
    The strong ligand effect in B-doped Pd-based (PdB) catalysts renders them a promising anode for constructing formic acid fuel cells (FAFCs) exhibiting high power density and outstanding stability. However, the enhancement of the oxidation barrier is unavoidable in this alloy system owing to the electron transfer (ET) from B to Pd. In this study, a hydrogen doping strategy is employed to open charge freedom in PdB compounds and boost their formic acid oxidation reaction (FAOR) activity by suppressing the ET process. The resulting hydrogen-doped PdB (PdBH) exhibits an ultrahigh mass activity of up to 1.2A mg-1 Pd, which is 3.23 times that of the PdB catalyst and 9.55 times that of Pd black. Detailed experimental and theoretical studies show that the interstitial hydrogen leads to enhanced orbital hybridization and reduced electron density around Pd. This optimized ligand effect weakens the carbon monoxide adsorption and increases the direct pathway preference of PdBH, resulting in its outstanding catalytic activity for the FAOR. The development of this high-performance hydrogen-doped PdB catalyst is an important step toward the construction of advanced light element co-doped metal catalysts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    氯化挥发性有机化合物(Cl-VOCs)具有显著的生物毒性和环境持久性由于氯原子的存在,严重危害生态安全和人类健康。二氯甲烷(DCM)作为模型污染物,广泛应用于溶剂中,制药中的萃取剂和清洁剂,化工和食品工业。在这项研究中,在微生物电解槽(MEC)中获得了高度生物相容性和导电性的碳-氮化钛-聚苯胺(CC-TiN-PANI)生物电极,用于DCM降解。证实了TiN和PANI在电极表面上的良好粘附。用Haldane模型拟合降解动力学,与CC生物电极(0.8h-1)相比,CC-TiN(1.4h-1)和CC-TiN-PANI(2.2h-1)生物电极的最大降解速率与半饱和浓度(Vmax/Km)的比例分别提高了1.8和2.8倍,分别。微生物群落结构分析表明,生物膜上的优势属是脂类和赤霉属,随着TiN和PANI的改性,丰度显著增强。DCM脱氯为甲醛可由DCM脱卤酶(DcmA)或卤代烷脱卤酶(DhlA)催化。并进一步氧化为甲酸盐:1)甲醛脱氢酶(FdhA)直接催化;2)通过S-(羟甲基)-谷胱甘肽合酶(Gfa)与谷胱甘肽偶联,S-(羟甲基)-谷胱甘肽脱氢酶(FrmA)和S-甲酰-谷胱甘肽水解酶(FrmB);3)与四氢叶酸(H4F)和/或四氢甲烷蝶呤偶联。
    Chlorinated volatile organic compounds (Cl-VOCs) have dramatically biotoxicity and environmental persistence due to the presence of chlorine atoms, seriously jeopardizing ecological security and human health. Dichloromethane (DCM) as a model pollutant, is widely applied in solvents, extractants and cleaning agents in the pharmaceutical, chemical and food industries. In this study, highly biocompatible and conductive carbon cloth-titanium nitride-polyaniline (CC-TiN-PANI) bioelectrodes were obtained for DCM degradation in microbial electrolysis cell (MEC). The good adhesion of TiN and PANI on the electrode surface was demonstrated. The degradation kinetics were fitted by the Haldane model, compared to the CC bioelectrode (0.8 h-1), the proportion of maximum degradation rates to half-saturation concentration (Vmax/Km) of CC-TiN (1.4 h-1) and CC-TiN-PANI (2.2 h-1) bioelectrodes were enhanced by 1.8 and 2.8 times, respectively. Microbial community structure analysis illuminated that the dominant genera on the biofilm were Alicycliphilus and Hyphomicrobium, and the abundance was enhanced significantly with the modification of TiN and PANI. The dechlorination of DCM to formaldehyde could be catalyzed by DCM dehalogenase (DcmA) or by haloalkane dehalogenase (DhlA). And further oxidized to formate: 1) direct catalyzed by formaldehyde dehydrogenase (FdhA); 2) conjugated with glutathione by S-(hydroxymethyl)-glutathione synthase (Gfa), S-(hydroxymethyl)-glutathione dehydrogenase (FrmA) and S-formyl-glutathione hydrolase (FrmB); 3) conjugation with tetrahydrofolate (H4F) and/or tetrahydromethanopterin.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    漆酶能够催化大量的反应,但其低氧化还原电位限制了其潜在的应用。光催化材料的使用通过将吸收的可见光转化为电子以促进酶催化而提供了该问题的解决方案。在这里,MIL-53(Fe)和NH2-MIL-53(Fe)作为光吸收剂和酶固定化载体,漆酶用于太阳能驱动的化学转化。电子自旋共振光谱结果证实,可见光照射导致光生电子从MOF激发快速转移到漆酶的T1Cu(II),将四环素(TC)的降解速率常数从0.0062显著提高到0.0127min-1。相反,在物理混合物状态下,MOF和漆酶之间只有最小或没有电子转移。理论计算表明,漆酶活性位点的固定及其与金属-有机骨架表面的共价结合增加了偶联系统的活性,将活动站点的可访问性从27.8减少到18.1。构建的光酶耦合系统成功地将酶催化的选择性与光催化的高反应性结合在一起,为太阳能使用提供了一个有前途的解决方案。
    Laccase is capable of catalyzing a vast array of reactions, but its low redox potential limits its potential applications. The use of photocatalytic materials offers a solution to this problem by converting absorbed visible light into electrons to facilitate enzyme catalysis. Herein, MIL-53(Fe) and NH2-MIL-53(Fe) serve as both light absorbers and enzyme immobilization carriers, and laccase is employed for solar-driven chemical conversion. Electron spin resonance spectroscopy results confirm that visible light irradiation causes rapid transfer of photogenerated electrons from MOF excitation to T1 Cu(II) of laccase, significantly increasing the degradation rate constant of tetracycline (TC) from 0.0062 to 0.0127 min-1. Conversely, there is only minimal or no electron transfer between MOF and laccase in the physical mixture state. Theoretical calculations demonstrate that the immobilization of laccase\'s active site and its covalent binding to the metal-organic framework surface augment the coupled system\'s activity, reducing the active site accessible from 27.8 to 18.1 Å. The constructed photo-enzyme coupled system successfully combines enzyme catalysis\' selectivity with photocatalysis\'s high reactivity, providing a promising solution for solar energy use.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    促进分子间电子转移的氧化还原酶在代谢途径中是关键的。基于黄素的电子分叉(FBEB),最近发现的氧化还原酶的能量耦合机制,能够将电子对可逆地分成两个受体,桥接exergonic和其他不可行的endergonic反应。本章探讨了四个不同的FBEB复杂家族,并强调了对FBEB复杂的十年结构见解。在这一章中,我们讨论建筑,电子转移路线,以及所有FBEB家族的构象变化,揭示了促进这些显著功能的结构基础。
    Oxidoreductases facilitating electron transfer between molecules are pivotal in metabolic pathways. Flavin-based electron bifurcation (FBEB), a recently discovered energy coupling mechanism in oxidoreductases, enables the reversible division of electron pairs into two acceptors, bridging exergonic and otherwise unfeasible endergonic reactions. This chapter explores the four distinct FBEB complex families and highlights a decade of structural insights into FBEB complexes. In this chapter, we discuss the architecture, electron transfer routes, and conformational changes across all FBEB families, revealing the structural foundation that facilitate these remarkable functions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    高级氧化工艺(AOPs)是最有效的水清洁技术,但它们的应用在质量/电子转移限制和催化剂损失/失活方面面临严峻挑战。双极电化学(BPE)是一种无线技术,有望用于能源和环境应用。然而,AOP和BPE之间的协同作用尚未得到探索。在这项研究中,通过将BPE与AOPs相结合,我们开发了一种使用碳纳米管(CNT)作为电场诱导的双极电极来控制电子转移以实现有效的水净化的通用方法。这种方法可用于高锰酸盐和过氧化物的活化,在降解难降解有机污染物方面具有优异的性能,在回收和放大实验中具有优异的耐久性。理论计算,原位测量,物理实验表明,电场可以大大降低碳纳米管上电子转移的能垒,并通过电化学极化诱导它们产生双极电极,或者通过与馈电电极的单粒子碰撞效应形成单极电极。这种方法可以连续地从双极电极的一个极提供激活的电子,同时通过CNT介导的直接氧化从双极电极的另一个极实现催化剂的“自清洁”。这项研究提供了对BPE的基本科学理解,扩大其在环境领域的范围,并提供了水净化的一般方法。
    Advanced oxidation processes (AOPs) are the most efficient water cleaning technologies, but their applications face critical challenges in terms of mass/electron transfer limitations and catalyst loss/deactivation. Bipolar electrochemistry (BPE) is a wireless technique that is promising for energy and environmental applications. However, the synergy between AOPs and BPE has not been explored. In this study, by combining BPE with AOPs, we develop a general approach of using carbon nanotubes (CNTs) as electric-field-induced bipolar electrodes to control electron transfer for efficient water purification. This approach can be used for permanganate and peroxide activation, with superior performances in the degradation of refractory organic pollutants and excellent durability in recycling and scale-up experiments. Theoretical calculations, in situ measurements, and physical experiments showed that an electric field could substantially reduce the energy barrier of electron transfer over CNTs and induce them to produce bipolar electrodes via electrochemical polarization or to form monopolar electrodes through a single particle collision effect with feeding electrodes. This approach can continuously provide activated electrons from one pole of bipolar electrodes and simultaneously achieve \"self-cleaning\" of catalysts through CNT-mediated direct oxidation from another pole of bipolar electrodes. This study provides a fundamental scientific understanding of BPE, expands its scope in the environmental field, and offers a general methodology for water purification.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号