{Reference Type}: Journal Article {Title}: Critical roles of low-molecular-weight organic acid in enhancing hydroxyl radical production by ferrous oxidation on γ-Al2O3 mineral surface. {Author}: Wen N;Liu J;Qin W;Wang X;Zhu C;Zhou D; {Journal}: Water Res {Volume}: 261 {Issue}: 0 {Year}: 2024 Sep 1 {Factor}: 13.4 {DOI}: 10.1016/j.watres.2024.122052 {Abstract}: Recognizing the pervasive presence of alumina minerals and low-molecular-weight organic acids (LMWOAs) in the environment, this study addressed the gap in the interaction mechanisms within the ternary system involving these two components and Fe(II). Specifically, the impacts of LMWOAs on hydroxyl radicals (•OH) production and iron species transformation during Fe(II) oxidation on γ-Al2O3 mineral surface were examined. Results demonstrated that adding 0.5 mM oxalate (OA) or citrate (CA) to the γ-Al2O3/Fe(II) system (28.1 μM) significantly enhanced •OH production by 1.9-fold (51.9 μM) and 1.3-fold (36.2 μM), respectively, whereas succinate (SA) exhibited limited effect (30.7 μM). Raising OA concentration to 5 mM further promoted •OH yield to 125.0 μM after 24 h. Deeper analysis revealed that CA facilitated the dissolution of adsorbed Fe(II) and its subsequent oxygenation by O2 through both one- and two-electron transfer mechanisms, whereas OA enhanced the adsorption of dissolved Fe(II) and more efficient two-electron transfer for H2O2 production. Additionally, LMWOAs presence favored the formation of iron minerals with poor crystallinity like ferrihydrite and lepidocrocite rather than well-crystallized forms such as goethite. The distinct impacts of various LMWOAs on Fe(II) oxidation and •OH generation underscore their unique roles in the redox processes at mineral surface, consequently modulating the environmental fate of prototypical pollutants like phenol.