EF-G

EF - G
  • 文章类型: Journal Article
    抗生素夫西地酸(FA)用于治疗金黄色葡萄球菌感染。它通过与延伸因子G(EF-G)结合并阻止其在易位后从核糖体释放来抑制蛋白质合成。而FA,由于渗透性问题,只对革兰氏阳性菌有效,FA抑制复合物的可用结构来自革兰氏阴性模型生物。为了填补这一知识空白,我们解决了与mRNA复合的金黄色葡萄球菌核糖体的冷冻EM结构,tRNA,EF-G和FA的分辨率为2.5,而相应的复杂结构与最近开发的FA衍生物FA-环戊烷(FA-CP)的分辨率为2.0。对于两种FA变体,观察到大多数核糖体颗粒处于嵌合状态,只有少数群体处于转位后状态。不出所料,FA在结构域I之间的口袋中结合,EF-G的II和III以及23SrRNA的sarcin-蓖麻毒素环。FA-CP在相同的位置结合,但是其环戊烷部分提供了与EF-G和23SrRNA的额外接触,这表明其对EF-G突变的抗性改善是由于更高的亲和力结合。这些高分辨率结构揭示了金黄色葡萄球菌核糖体的新细节,包括许多rRNA修饰的确认,并为未来在重要的临床药物靶标上基于结构的药物发现提供了最佳起点。
    The antibiotic fusidic acid (FA) is used to treat Staphylococcus aureus infections. It inhibits protein synthesis by binding to elongation factor G (EF-G) and preventing its release from the ribosome after translocation. While FA, due to permeability issues, is only effective against gram-positive bacteria, the available structures of FA-inhibited complexes are from gram-negative model organisms. To fill this knowledge gap, we solved cryo-EM structures of the S. aureus ribosome in complex with mRNA, tRNA, EF-G and FA to 2.5 Å resolution and the corresponding complex structures with the recently developed FA derivative FA-cyclopentane (FA-CP) to 2.0 Å resolution. With both FA variants, the majority of the ribosomal particles are observed in chimeric state and only a minor population in post-translocational state. As expected, FA binds in a pocket between domains I, II and III of EF-G and the sarcin-ricin loop of 23S rRNA. FA-CP binds in an identical position, but its cyclopentane moiety provides additional contacts to EF-G and 23S rRNA, suggesting that its improved resistance profile towards mutations in EF-G is due to higher-affinity binding. These high-resolution structures reveal new details about the S. aureus ribosome, including confirmation of many rRNA modifications, and provide an optimal starting point for future structure-based drug discovery on an important clinical drug target.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    靶向翻译因子蛋白有望开发创新的抗结核药物。在蛋白质翻译过程中,许多因素导致核糖体在信使RNA(mRNA)处停滞。为了维持蛋白质的稳态,细菌已经进化出各种核糖体拯救机制,包括主要的翻译过程,释放停滞的核糖体并去除异常的mRNA。拯救系统需要翻译延伸因子蛋白(EF)的参与,并且对于细菌生理和繁殖至关重要。然而,它们在真核进化过程中消失,这使得必需蛋白和翻译延伸因子有望成为抗菌药物的靶点。这里,我们综述了翻译延伸因子EF-Tu的结构和分子机制,EF-Ts,和EF-G,在结核分枝杆菌(Mtb)的正常翻译和核糖体拯救机制中起着至关重要的作用。我们还简要描述了基于结构的,计算机辅助抗结核药物研究。
    Targeting translation factor proteins holds promise for developing innovative anti-tuberculosis drugs. During protein translation, many factors cause ribosomes to stall at messenger RNA (mRNA). To maintain protein homeostasis, bacteria have evolved various ribosome rescue mechanisms, including the predominant trans-translation process, to release stalled ribosomes and remove aberrant mRNAs. The rescue systems require the participation of translation elongation factor proteins (EFs) and are essential for bacterial physiology and reproduction. However, they disappear during eukaryotic evolution, which makes the essential proteins and translation elongation factors promising antimicrobial drug targets. Here, we review the structural and molecular mechanisms of the translation elongation factors EF-Tu, EF-Ts, and EF-G, which play essential roles in the normal translation and ribosome rescue mechanisms of Mycobacterium tuberculosis (Mtb). We also briefly describe the structure-based, computer-assisted study of anti-tuberculosis drugs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    核糖体通过经典状态和杂合状态之间重复的亚基间重排来聚合新生肽。肽基-tRNA,翻译延伸过程中的中间物种,稳定翻译核糖体,以确保延伸的强大连续性。然而,富含酸性残基的序列的翻译使核糖体不稳定,导致随机的过早翻译停止,称为内在核糖体不稳定(IRD),这仍然是不明确的。这里,我们剖析了大肠杆菌IRD的分子机制。IRD事件的重建揭示了(1)延长的核糖体停滞增强IRD介导的翻译中断,(2)IRD取决于温度,(3)不稳定的70S核糖体复合物不一定分裂,和(4)使去稳定的核糖体经受肽基-tRNA水解酶介导的肽基-tRNA水解而没有亚基分裂或再循环因子介导的亚基分裂。总的来说,我们的数据表明,富含酸性序列的翻译将70S核糖体的构象改变为允许非规范过早终止的异常状态.
    Ribosomes polymerize nascent peptides through repeated inter-subunit rearrangements between the classic and hybrid states. The peptidyl-tRNA, the intermediate species during translation elongation, stabilizes the translating ribosome to ensure robust continuity of elongation. However, the translation of acidic residue-rich sequences destabilizes the ribosome, leading to a stochastic premature translation cessation termed intrinsic ribosome destabilization (IRD), which is still ill-defined. Here, we dissect the molecular mechanisms underlying IRD in Escherichia coli. Reconstitution of the IRD event reveals that (1) the prolonged ribosome stalling enhances IRD-mediated translation discontinuation, (2) IRD depends on temperature, (3) the destabilized 70S ribosome complex is not necessarily split, and (4) the destabilized ribosome is subjected to peptidyl-tRNA hydrolase-mediated hydrolysis of the peptidyl-tRNA without subunit splitting or recycling factors-mediated subunit splitting. Collectively, our data indicate that the translation of acidic-rich sequences alters the conformation of the 70S ribosome to an aberrant state that allows the noncanonical premature termination.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由伸长因子G(EF-G)介导,核糖体沿mRNA的易位伴随着核糖体亚基之间的旋转运动。这里,我们重新评估亚基间旋转是否需要通过EF-G水解GTP或可以自发发生。为此,我们采用两个独立的FRET检测,它们基于标记核糖体蛋白(bS6和bL9)或rRNA(16S的h44和23SrRNA的H101)。两个FRET对都显示了三个FRET状态,对应于非旋转,核糖体的旋转和半旋转构象。两种FRET检测都表明,在没有EF-G的情况下,含有脱酰化P位点tRNA的转位前核糖体在非旋转和旋转构象之间经历自发的亚基间旋转。虽然这两个FRET对表现出很大程度上相似的行为,它们在显示自发波动的核糖体部分上有很大不同。然而,而不是每个FRET对的不变的内在属性,自发波动分子的分数在两种FRET测定中根据实验条件而变化。我们的结果强调了在核糖体动力学研究中使用多个FRET对的重要性,并强调了热驱动的大规模核糖体重排在翻译中的作用。
    Mediated by elongation factor G (EF-G), ribosome translocation along mRNA is accompanied by rotational movement between ribosomal subunits. Here, we reassess whether the intersubunit rotation requires GTP hydrolysis by EF-G or can occur spontaneously. To that end, we employ two independent FRET assays, which are based on labeling either ribosomal proteins (bS6 and bL9) or rRNAs (h44 of 16S and H101 of 23S rRNA). Both FRET pairs reveal three FRET states, corresponding to the non-rotated, rotated and semi-rotated conformations of the ribosome. Both FRET assays show that in the absence of EF-G, pre-translocation ribosomes containing deacylated P-site tRNA undergo spontaneous intersubunit rotations between non-rotated and rotated conformations. While the two FRET pairs exhibit largely similar behavior, they substantially differ in the fraction of ribosomes showing spontaneous fluctuations. Nevertheless, instead of being an invariable intrinsic property of each FRET pair, the fraction of spontaneously fluctuating molecules changes in both FRET assays depending on experimental conditions. Our results underscore importance of using multiple FRET pairs in studies of ribosome dynamics and highlight the role of thermally-driven large-scale ribosome rearrangements in translation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    将信使RNA(mRNA)忠实地翻译成蛋白质对于维持细胞中的蛋白质稳态至关重要。由于同源氨酰基转移RNA(tRNA)的严格选择以及核糖体对mRNA阅读框的严格控制,自发的翻译错误非常罕见。重新编码事件,例如终止密码子连读,移码,和翻译旁路,重新编程核糖体,故意犯错误,并从相同的mRNA产生替代蛋白质。重新编码的标志是核糖体动力学的变化。用于重新编码的信号被建立在mRNA中,但是它们的读数取决于细胞的基因组成,导致表达式程序中特定于单元格的更改。在这次审查中,我讨论了规范解码和tRNA-mRNA易位的机制;描述导致重新编码的替代途径;并确定mRNA信号之间的联系,核糖体动力学,和重新编码。
    Faithful translation of messenger RNA (mRNA) into protein is essential to maintain protein homeostasis in the cell. Spontaneous translation errors are very rare due to stringent selection of cognate aminoacyl transfer RNAs (tRNAs) and the tight control of the mRNA reading frame by the ribosome. Recoding events, such as stop codon readthrough, frameshifting, and translational bypassing, reprogram the ribosome to make intentional mistakes and produce alternative proteins from the same mRNA. The hallmark of recoding is the change of ribosome dynamics. The signals for recoding are built into the mRNA, but their reading depends on the genetic makeup of the cell, resulting in cell-specific changes in expression programs. In this review, I discuss the mechanisms of canonical decoding and tRNA-mRNA translocation; describe alternative pathways leading to recoding; and identify the links among mRNA signals, ribosome dynamics, and recoding.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    翻译G蛋白,它们从核糖体中的释放是由GTP水解引发的,调节蛋白质合成。伴随着蛋白质因子的结合和解离,翻译伴随着核糖体亚基之间的正向和反向旋转。使用单分子测量,我们探索了翻译GTP酶的结合影响核糖体亚基间旋转的方式。我们证明了高度保守的翻译因子LepA,其功能仍在争论中,将平衡向核糖体的非旋转构象移动。相比之下,核糖体易位的催化剂,延伸率G(EF-G),有利于核糖体的旋转构象。然而,P位点肽基tRNA和抗生素的存在,稳定核糖体的非旋转构象,仅适度降低EF-G结合。这些结果支持该模型,表明EF-G在mRNA易位过程中与核糖体的非旋转和旋转构象相互作用。我们的结果为LepA和EF-G作用的分子机制提供了新的见解,并强调了核糖体结构动力学在翻译中的作用。
    Translational G proteins, whose release from the ribosome is triggered by GTP hydrolysis, regulate protein synthesis. Concomitantly with binding and dissociation of protein factors, translation is accompanied by forward and reverse rotation between ribosomal subunits. Using single-molecule measurements, we explore the ways in which the binding of translational GTPases affects inter-subunit rotation of the ribosome. We demonstrate that the highly conserved translation factor LepA, whose function remains debated, shifts the equilibrium toward the non-rotated conformation of the ribosome. By contrast, the catalyst of ribosome translocation, elongation factor G (EF-G), favors the rotated conformation of the ribosome. Nevertheless, the presence of P-site peptidyl-tRNA and antibiotics, which stabilize the non-rotated conformation of the ribosome, only moderately reduces EF-G binding. These results support the model suggesting that EF-G interacts with both the non-rotated and rotated conformations of the ribosome during mRNA translocation. Our results provide new insights into the molecular mechanisms of LepA and EF-G action and underscore the role of ribosome structural dynamics in translation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在原核生物的翻译启动中,IF3识别mRNA的起始密码子和fMet-tRNAini的反密码子之间的相互作用,然后将fMet-tRNAini重新定位到活性位置。在这里,我们调查了328个密码子-反密码子组合对IF3的偏好。在密码子的第一个和第二个碱基,只有沃森-克里克碱基对是可以容忍的。在三垒,更强的碱基对,例如沃森-克里克,更喜欢,但是其他类型的碱基对,例如G/U摆动,也可以耐受;IF3排除了较弱的碱基对。当密码子-反密码子组合对IF3不利或IF3的浓度太低而无法识别任何密码子-反密码子组合时,IF3未能将P位点fMet-tRNAini设置在活性位置并导致其从核糖体脱落。因此,翻译重新起始从A位点处的第二氨酰基-tRNA发生,以产生缺少N-末端fMet的截短的肽。我们将此事件称为N端下降-重新启动。我们还表明,EF-G和RRF参与分解这种带有无活性fMet-tRNAini的异常核糖体复合物,从而EF-G和RRF能够排除具有较弱碱基对的不利密码子-反密码子组合,并减轻N末端脱落-重新开始。
    In translation initiation in prokaryotes, IF3 recognizes the interaction between the initiator codon of mRNA and the anticodon of fMet-tRNAini and then relocates the fMet-tRNAini to an active position. Here, we have surveyed 328 codon-anticodon combinations for the preference of IF3. At the first and second base of the codon, only Watson-Crick base pairs are tolerated. At the third base, stronger base pairs, for example, Watson-Crick, are more preferred, but other types of base pairs, for example, G/U wobble, are also tolerated; weaker base pairs are excluded by IF3. When the codon-anticodon combinations are unfavorable for IF3 or the concentration of IF3 is too low to recognize any codon-anticodon combinations, IF3 fails to set the P-site fMet-tRNAini at the active position and causes its drop-off from the ribosome. Thereby, translation reinitiation occurs from the second aminoacyl-tRNA at the A site to yield a truncated peptide lacking the amino-terminal fMet. We refer to this event as the amino-terminal drop-off-reinitiation. We also showed that EF-G and RRF are involved in disassembling such an aberrant ribosome complex bearing inactive fMet-tRNAini Thereby EF-G and RRF are able to exclude unfavorable codon-anticodon combinations with weaker base pairs and alleviate the amino-terminal drop-off-reinitiation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: English Abstract
    作为在两个翻译过程(延伸和核糖体再生)中起关键作用的唯一翻译因子,GTP酶延伸因子G(EF-G)是抗微生物剂的潜在靶标。耻垢分枝杆菌和结核分枝杆菌都有两个EF-G同源编码基因,MsmEFG1(MSMEG_1400)和MsmEFG2(MSMEG_6535),fusA1(Rv0684)和fusA2(Rv0120c),分别。MsmEFG1(MSMEG_1400)和fusA1(Rv0684)通过基因突变文库和生物信息学分析被鉴定为细菌生长的必需基因。探讨分枝杆菌EF-G的生物学功能和特性,通过成簇规则间隔的短回文重复干扰(CRISPRi)技术,构建了来自耻垢分枝杆菌的两个诱导的EF-G敲低菌株(Msm-ΔEFG1(KD)和Msm-ΔEFG2(KD))。EF-G2敲除对细菌生长没有影响,而EF-G1基因敲低显著延缓了分枝杆菌的生长,削弱了成膜能力,改变了菌落的形态,并增加了分枝杆菌的长度。推测EF-G可能参与细菌的分裂。最低抑菌浓度测定显示,抑制EF-G1的表达可增强分枝杆菌对利福平的敏感性,异烟肼,红霉素,岩藻酸,卷曲霉素和其他抗菌剂,提示EF-G1可能是未来筛选抗结核药物的潜在靶点.
    As the only translational factor that plays a critical role in two translational processes (elongation and ribosome regeneration), GTPase elongation factor G (EF-G) is a potential target for antimicrobial agents. Both Mycobacterium smegmatis and Mycobacterium tuberculosis have two EF-G homologous coding genes, MsmEFG1 (MSMEG_1400) and MsmEFG2 (MSMEG_6535), fusA1 (Rv0684) and fusA2 (Rv0120c), respectively. MsmEFG1 (MSMEG_1400) and fusA1 (Rv0684) were identified as essential genes for bacterial growth by gene mutation library and bioinformatic analysis. To investigate the biological function and characteristics of EF-G in mycobacterium, two induced EF-G knockdown strains (Msm-ΔEFG1(KD) and Msm-ΔEFG2(KD)) from Mycobacterium smegmatis were constructed by clustered regularly interspaced short palindromic repeats interference (CRISPRi) technique. EF-G2 knockdown had no effect on bacterial growth, while EF-G1 knockdown significantly retarded the growth of mycobacterium, weakened the film-forming ability, changed the colony morphology, and increased the length of mycobacterium. It was speculated that EF-G might be involved in the division of bacteria. Minimal inhibitory concentration assay showed that inhibition of EF-G1 expression enhanced the sensitivity of mycobacterium to rifampicin, isoniazid, erythromycin, fucidic acid, capreomycin and other antibacterial agents, suggesting that EF-G1 might be a potential target for screening anti-tuberculosis drugs in the future.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    许多与核糖体结合的抗生素通过阻断tRNA和mRNA的运动或干扰核糖体动力学来抑制翻译,削弱必需易位中间体的形成。在这里,我们展示了易位抑制剂伟霉素(Vio),新霉素(Neo),巴龙霉素(Par),卡那霉素(Kan),壮观霉素(Spc),潮霉素B(HygB),和链霉素(Str,一种不抑制tRNA运动的抗生素),在EF-G促进的易位过程中影响小核糖体亚基(SSU)的主要运动。使用整体动力学,我们实时研究了SSU体域旋转和SSU头域旋转。我们表明,尽管抗生素与核糖体结合可以在没有EF-G的情况下有利于特定的核糖体构象,它们对EF-G诱导的SSU向旋转/旋转状态过渡的动力学影响是中等的。抗生素主要抑制SSU体和/或头部结构域的向后运动。Vio,Spc,高浓度的Neo完全抑制SSU主体和头域的向后运动。菅直人,标准杆,HygB,低浓度的Neo减慢了这两种运动,但它们的顺序和协调被保留。最后,Str对SSU体域的向后旋转影响很小,但是阻碍了SSU头部的移动。数据强调了核糖体动力学对tRNA-mRNA易位的重要性,并为抗生素作用机制提供了新的见解。
    Many antibiotics that bind to the ribosome inhibit translation by blocking the movement of tRNAs and mRNA or interfering with ribosome dynamics, which impairs the formation of essential translocation intermediates. Here we show how translocation inhibitors viomycin (Vio), neomycin (Neo), paromomycin (Par), kanamycin (Kan), spectinomycin (Spc), hygromycin B (HygB), and streptomycin (Str, an antibiotic that does not inhibit tRNA movement), affect principal motions of the small ribosomal subunits (SSU) during EF-G-promoted translocation. Using ensemble kinetics, we studied the SSU body domain rotation and SSU head domain swiveling in real time. We show that although antibiotics binding to the ribosome can favor a particular ribosome conformation in the absence of EF-G, their kinetic effect on the EF-G-induced transition to the rotated/swiveled state of the SSU is moderate. The antibiotics mostly inhibit backward movements of the SSU body and/or the head domains. Vio, Spc, and high concentrations of Neo completely inhibit the backward movements of the SSU body and head domain. Kan, Par, HygB, and low concentrations of Neo slow down both movements, but their sequence and coordination are retained. Finally, Str has very little effect on the backward rotation of the SSU body domain, but retards the SSU head movement. The data underscore the importance of ribosome dynamics for tRNA-mRNA translocation and provide new insights into the mechanism of antibiotic action.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Kinetic characterization of ribosomal translocation is important for understanding the mechanism of elongation in protein synthesis. Here we have optimized a popular fluorescent-mRNA based translocation assay conducted in stopped-flow, by calibrating it with the functional tripeptide formation assay in quench-flow. We found that a fluorescently labelled mRNA, ten bases long from position +1 (mRNA+10), is best suited for both assays as it forms tripeptide at a fast rate equivalent to the longer mRNAs, and yet produces a large fluorescence change upon mRNA movement. Next, we compared the commonly used peptidyl tRNA analog, N-acetyl-Phe-tRNAPhe, with the natural dipeptidyl fMet-Phe-tRNAPhe in the stopped-flow assay. This analog translocates about two times slower than the natural dipeptidyl tRNA and produces biphasic kinetics. The rates reduce further at lower temperatures and with higher Mg2+ concentration, but improve with higher elongation factor G (EF-G) concentration, which increase both rate and amplitude of the fast phase significantly. In summary, we present here an improved real time assay for monitoring mRNA-translocation with the natural- and an N-Ac-analog of dipeptidyl tRNA.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号