EF-G

EF - G
  • 文章类型: Journal Article
    靶向翻译因子蛋白有望开发创新的抗结核药物。在蛋白质翻译过程中,许多因素导致核糖体在信使RNA(mRNA)处停滞。为了维持蛋白质的稳态,细菌已经进化出各种核糖体拯救机制,包括主要的翻译过程,释放停滞的核糖体并去除异常的mRNA。拯救系统需要翻译延伸因子蛋白(EF)的参与,并且对于细菌生理和繁殖至关重要。然而,它们在真核进化过程中消失,这使得必需蛋白和翻译延伸因子有望成为抗菌药物的靶点。这里,我们综述了翻译延伸因子EF-Tu的结构和分子机制,EF-Ts,和EF-G,在结核分枝杆菌(Mtb)的正常翻译和核糖体拯救机制中起着至关重要的作用。我们还简要描述了基于结构的,计算机辅助抗结核药物研究。
    Targeting translation factor proteins holds promise for developing innovative anti-tuberculosis drugs. During protein translation, many factors cause ribosomes to stall at messenger RNA (mRNA). To maintain protein homeostasis, bacteria have evolved various ribosome rescue mechanisms, including the predominant trans-translation process, to release stalled ribosomes and remove aberrant mRNAs. The rescue systems require the participation of translation elongation factor proteins (EFs) and are essential for bacterial physiology and reproduction. However, they disappear during eukaryotic evolution, which makes the essential proteins and translation elongation factors promising antimicrobial drug targets. Here, we review the structural and molecular mechanisms of the translation elongation factors EF-Tu, EF-Ts, and EF-G, which play essential roles in the normal translation and ribosome rescue mechanisms of Mycobacterium tuberculosis (Mtb). We also briefly describe the structure-based, computer-assisted study of anti-tuberculosis drugs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: English Abstract
    作为在两个翻译过程(延伸和核糖体再生)中起关键作用的唯一翻译因子,GTP酶延伸因子G(EF-G)是抗微生物剂的潜在靶标。耻垢分枝杆菌和结核分枝杆菌都有两个EF-G同源编码基因,MsmEFG1(MSMEG_1400)和MsmEFG2(MSMEG_6535),fusA1(Rv0684)和fusA2(Rv0120c),分别。MsmEFG1(MSMEG_1400)和fusA1(Rv0684)通过基因突变文库和生物信息学分析被鉴定为细菌生长的必需基因。探讨分枝杆菌EF-G的生物学功能和特性,通过成簇规则间隔的短回文重复干扰(CRISPRi)技术,构建了来自耻垢分枝杆菌的两个诱导的EF-G敲低菌株(Msm-ΔEFG1(KD)和Msm-ΔEFG2(KD))。EF-G2敲除对细菌生长没有影响,而EF-G1基因敲低显著延缓了分枝杆菌的生长,削弱了成膜能力,改变了菌落的形态,并增加了分枝杆菌的长度。推测EF-G可能参与细菌的分裂。最低抑菌浓度测定显示,抑制EF-G1的表达可增强分枝杆菌对利福平的敏感性,异烟肼,红霉素,岩藻酸,卷曲霉素和其他抗菌剂,提示EF-G1可能是未来筛选抗结核药物的潜在靶点.
    As the only translational factor that plays a critical role in two translational processes (elongation and ribosome regeneration), GTPase elongation factor G (EF-G) is a potential target for antimicrobial agents. Both Mycobacterium smegmatis and Mycobacterium tuberculosis have two EF-G homologous coding genes, MsmEFG1 (MSMEG_1400) and MsmEFG2 (MSMEG_6535), fusA1 (Rv0684) and fusA2 (Rv0120c), respectively. MsmEFG1 (MSMEG_1400) and fusA1 (Rv0684) were identified as essential genes for bacterial growth by gene mutation library and bioinformatic analysis. To investigate the biological function and characteristics of EF-G in mycobacterium, two induced EF-G knockdown strains (Msm-ΔEFG1(KD) and Msm-ΔEFG2(KD)) from Mycobacterium smegmatis were constructed by clustered regularly interspaced short palindromic repeats interference (CRISPRi) technique. EF-G2 knockdown had no effect on bacterial growth, while EF-G1 knockdown significantly retarded the growth of mycobacterium, weakened the film-forming ability, changed the colony morphology, and increased the length of mycobacterium. It was speculated that EF-G might be involved in the division of bacteria. Minimal inhibitory concentration assay showed that inhibition of EF-G1 expression enhanced the sensitivity of mycobacterium to rifampicin, isoniazid, erythromycin, fucidic acid, capreomycin and other antibacterial agents, suggesting that EF-G1 might be a potential target for screening anti-tuberculosis drugs in the future.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:白菊(Kar。etKir.)内夫斯基,这是一个常年,分布在俄罗斯和哈萨克斯坦的交叉授粉小麦草,被归类为爱丽曲贾,披碱草,和Lophyrum属由分类学家根据不同的分类学分类系统。然而,Lolioides的基因组组成仍然未知。为了确定E.lolioides的基因组组成和进化,我们使用了单拷贝核基因乙酰辅酶A羧化酶(Acc1)和延伸因子G(EF-G),多拷贝核基因内部转录空间(ITS),叶绿体基因trnL-F与荧光和基因组原位杂交。
    结果:尽管ITS序列广泛同质化,鉴定出两个不同的谱系(伪黑属和大麦属)。Acc1和EF-G序列表明,除了伪黄病和大麦,未知基因组是Lolioides的第三个潜在供体。来自叶绿体DNA的数据表明,假骨是E.lolioides的母体供体。来自St基因组的特定FISH标记的数据表明Lolioides具有两组St基因组。基因组原位杂交(GISH)和荧光原位杂交(FISH)结果均证实了该物种中大麦基因组的存在。当E基因组被用作探针时,在42条染色体中没有发现信号。在Lolioides中检测到Acc1序列的E样拷贝,可能是由于来自E基因组物种的渗入。来自哈萨克斯坦的登录号W6-26586中的H染色体之一未与H基因组信号杂交,但在双色GISH的着丝粒区域上具有St基因组信号。
    结论:系统发育和原位杂交表明,在Lolioides中存在两组假单胞菌和一组大麦基因组。E.lolioides的基因组配方设计为StStStStStHH。E.lolioides可能是通过四倍体披碱草(StH)和二倍体伪黄虫物种之间的杂交而起源的。E和未知基因组可能通过基因渗入参与E.lolioides的物种形成。根据基因组分类系统,应将E.lolioides转移到ElymusL.并更名为Elymuslolioidus(Kar。呃Kir.)混合。
    BACKGROUND: Elytrigia lolioides (Kar. et Kir.) Nevski, which is a perennial, cross-pollinating wheatgrass that is distributed in Russia and Kazakhstan, is classified into Elytrigia, Elymus, and Lophopyrum genera by taxonomists on the basis of different taxonomic classification systems. However, the genomic constitution of E. lolioides is still unknown. To identify the genome constitution and evolution of E. lolioides, we used single-copy nuclear genes acetyl-CoA carboxylase (Acc1) and elongation factor G (EF-G), multi-copy nuclear gene internal transcribed space (ITS), chloroplast gene trnL-F together with fluorescence and genomic in situ hybridization.
    RESULTS: Despite the widespread homogenization of ITS sequences, two distinct lineages (genera Pseudoroegneria and Hordeum) were identified. Acc1 and EF-G sequences suggested that in addition to Pseudoroegneria and Hordeum, unknown genome was the third potential donor of E. lolioides. Data from chloroplast DNA showed that Pseudoroegneria is the maternal donor of E. lolioides. Data from specific FISH marker for St genome indicated that E. lolioides has two sets of St genomes. Both genomic in situ hybridization (GISH) and fluorescence in situ hybridization (FISH) results confirmed the presence of Hordeum genome in this species. When E genome was used as the probe, no signal was found in 42 chromosomes. The E-like copy of Acc1 sequences was detected in E. lolioides possibly due to the introgression from E genome species. One of the H chromosomes in the accession W6-26586 from Kazakhstan did not hybridize H genome signals but had St genome signals on the pericentromeric regions in the two-color GISH.
    CONCLUSIONS: Phylogenetic and in situ hybridization indicated the presence of two sets of Pseudoroegneria and one set of Hordeum genome in E. lolioides. The genome formula of E. lolioides was designed as StStStStHH. E. lolioides may have originated through the hybridization between tetraploid Elymus (StH) and diploid Pseudoroegneria species. E and unknown genomes may participate in the speciation of E. lolioides through introgression. According to the genome classification system, E. lolioides should be transferred into Elymus L. and renamed as Elymus lolioidus (Kar. er Kir.) Meld.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号