Biolistics

Biolistics
  • 文章类型: Journal Article
    种子休眠基因通常抑制发芽和细胞分裂。因此,过表达这些基因会对组织培养产生负面影响,干扰转基因植物的产生,从而阻碍基因功能的分析。在靶细胞中瞬时表达是研究种子休眠基因功能的有用方法。这里,我们描述了在未成熟小麦(Triticumaestivum)胚的盾片中瞬时表达与种子休眠相关的基因的方案,以分析它们对发芽的影响。
    Seed dormancy genes typically suppress germination and cell division. Therefore, overexpressing these genes can negatively affect tissue culture, interfering with the generation of transgenic plants and thus hampering the analysis of gene function. Transient expression in target cells is a useful approach for studying the function of seed dormancy genes. Here, we describe a protocol for transiently expressing genes related to seed dormancy in the scutellum of immature wheat (Triticum aestivum) embryos to analyze their effects on germination.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    数十年来,贝克酵母酿酒酵母已被广泛用于了解线粒体生物学。该模型提供了有关基本知识,真核生物中保守的线粒体途径,和真菌或酵母特异性途径。酿酒酵母的许多能力之一是操纵线粒体基因组的能力,到目前为止,只有在酿酒酵母和单细胞藻类衣藻中才能实现。酵母线粒体的生物射弹转化使我们能够引入定点突变,进行基因重排,并介绍记者。这些方法主要用于了解线粒体中两个高度协调过程的机制:线粒体翻译以及呼吸复合物和ATP合酶的组装。然而,线粒体转化可用于研究其他途径。在目前的工作中,我们展示了如何通过高速微粒轰击转化酵母线粒体,选择并纯化预期的转化体,并在线粒体基因组中引入所需的突变。
    Baker´s yeast Saccharomyces cerevisiae has been widely used to understand mitochondrial biology for decades. This model has provided knowledge about essential, conserved mitochondrial pathways among eukaryotes, and fungi or yeast-specific pathways. One of the many abilities of S. cerevisiae is the capacity to manipulate the mitochondrial genome, which so far is only possible in S. cerevisiae and the unicellular algae Chlamydomonas reinhardtii. The biolistic transformation of yeast mitochondria allows us to introduce site-directed mutations, make gene rearrangements, and introduce reporters. These approaches are mainly used to understand the mechanisms of two highly coordinated processes in mitochondria: translation by mitoribosomes and assembly of respiratory complexes and ATP synthase. However, mitochondrial transformation can potentially be used to study other pathways. In the present work, we show how to transform yeast mitochondria by high-velocity microprojectile bombardment, select and purify the intended transformant, and introduce the desired mutation in the mitochondrial genome.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    刺槐是苔藓和苔藓的姊妹苔藓的苔藓谱系。角草具有一系列独特的功能,不仅可以用来阐明陆地植物的早期进化,而且还有通过蓝细菌共生和基于拟肾素的CO2浓缩机制(CCM)进行氮和碳同化的替代途径,分别。尽管如此,刺耳是为数不多的植物谱系之一,可用的遗传工具有限。在这里,我们报告了一种有效的生物射弹方法,用于在模型中产生瞬时表达和稳定的转基因系,炭疽病。平均569(±268)个细胞显示每次轰击的瞬时表达,在48-72小时内观察到绿色荧光蛋白表达。在三个独立的实验中总共回收了81个稳定转化的品系。平均每次轰炸六行。我们按照同样的方法暂时转化了9种额外的角草,并从中获得稳定的转化体。该方法进一步用于验证Rubisco和Rubisco激活酶在类蛋白中的定位。它们是CCM功能的中心蛋白。一起,与现有方法相比,我们的生物射弹方法具有关键优势,因为它可以实现快速瞬时表达,并且可以应用于广泛多样的龙葵物种。
    Hornworts are a deeply diverged lineage of bryophytes that are sister to mosses and liverworts. Hornworts have an array of unique features that can be leveraged to illuminate not only the early evolution of land plants, but also alternative paths for nitrogen and carbon assimilation via cyanobacterial symbiosis and a pyrenoid-based CO2-concentrating mechanism (CCM), respectively. Despite this, hornworts are one of the few plant lineages with limited available genetic tools. Here we report an efficient biolistics method for generating transient-expression and stable transgenic lines in the model hornwort, Anthoceros agrestis. An average of 569 (± 268) cells showed transient expression per bombardment, with green fluorescent protein expression observed within 48-72 hours. A total of 81 stably transformed lines were recovered across three separate experiments, averaging six lines per bombardment. We followed the same method to transiently transform nine additional hornwort species, and obtained stable transformants from one. This method was further used to verify the localization of Rubisco and Rubisco activase in pyrenoids, which are central proteins for CCM function. Together, our biolistics approach offers key advantages over existing methods as it enables rapid transient expression and can be applied to widely diverse hornwort species.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    新生隐球菌的生物射弹转化被用作遗传改变或删除目标基因的分子工具。通过使用生物射弹粒子系统产生的氦冲击波,将DNA引入到DNA包被的金珠上的酵母中。该方法通常涉及通过同源重组将显性选择标记插入所需位点。为了增加同源重组的可能性,使用重叠DNA的大片段。两个最常用的显性选择标记是Nourserothricin和Geneticin。由于需要在同一菌株中产生多个基因缺失,有可回收的标记系统,例如提供额外有用的分子工具的噬菌体P1Cre-loxP系统或CRISPR。虽然存在较新的策略来产生缺失并引入标记和其他基因修饰,生物射弹转化仍然是促进转基因酵母菌株构建的可行工具。本章提供了一个关于如何删除和恢复新衣原体基因的工作方案。
    Biolistic transformation of Cryptococcus neoformans is used as a molecular tool to genetically alter or delete targeted genes. The DNA is introduced into the yeast on DNA-coated gold beads by a helium shock wave produced using a biolistic particle system. The procedure often involves insertion of a dominant selectable marker into the desired site by homologous recombination. To increase the likelihood of homologous recombination, large fragments of overlapping DNA are used. The two most used dominant selectable markers are nourseothricin and Geneticin. With the need to generate multiple gene deletions in the same strain, there are recyclable marker systems, such as the bacteriophage P1 Cre-loxP system or CRISPR that provide additional useful molecular tools. While newer strategies exist to generate deletions and introduce markers and other gene modifications, biolistic transformation has remained a viable tool to facilitate the construction of genetically modified yeast strains. This chapter provides a working protocol on how to delete and restore a gene in C. neoformans.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    组织培养优化方案限制了in稻育种。这种挑战是至关重要的,因为新兴技术仍然依赖于组织培养方法,并且可以育种具有更高的产量和对气候变化造成的不利环境影响的耐受性的新品种。基因组编辑技术,使用CRISPR/Cas9,是一种快速,精确的加速植物育种方法。由于对体外培养方法的顽固反应,它限制了其在in子亚种中的使用。本章介绍了在in子亚种中进行CRISPR/Cas9编辑的协议,特别是在来自亲本品系IR-822的CR-5272品种中,使用根癌农杆菌和生物射弹转化。
    Tissue culture optimization protocols limit indica rice breeding. Such a challenge is vital because emergent techniques still rely on tissue culture methods and could allow the breeding of new varieties with higher production and toleration of adverse environmental effects caused by climate change. Genome editing technology, using CRISPR/Cas9, is a fast and precise method for accelerated plant breeding. It limited its use in indica subspecies because of the recalcitrant response to in vitro culture methods. This chapter describes a protocol for CRISPR/Cas9 editing in indica subspecies, specifically in the CR-5272 variety derived from parental lines IR-822, using Agrobacterium tumefaciens and biolistic transformation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    经由生物射弹方法(例如Helios基因枪)的基于物理的基因递送涉及将核酸沉淀到微粒上并通过高速加速直接转染通过暴露组织(例如皮肤)的细胞膜。糖胺聚糖(GAG)结合增强转导(GET)系统利用由细胞结合,核酸浓缩,和细胞穿透结构域,这使得能够增强跨多种细胞类型的转染。在这项研究中,我们结合了化学(GET)和物理(基因枪)DNA递送系统,并假设该组合将在最初未通过生物射弹穿透转染的细胞中产生增强的分布和有效摄取。物理化学表征,在细胞单层和工程组织中体外子弹含量和转染实验的优化证明了这些制剂的有效转染,包括DC2.4树突状细胞。我们通过形成通过冻干(冷冻干燥)获得的可烧制的干子弹,将这些制剂掺入基因枪的生物射弹形式中。与生成子弹的常规方法相比,该系统简单且具有增强的可扩展性。冲洗的GET子弹内容物保留了其介导转染的能力(在不存在和存在血清的情况下,报告基因表达比标准亚精胺子弹高17倍和13倍,分别)。与未处理的对照相比,体外(在细胞和胶原蛋白凝胶中)和体内(小鼠)发射的GET子弹显示出增加的报告基因转染,同时在体外保持细胞活力,在体内无明显毒性。最后,使用GET子弹通过基因枪递送具有刺突(S)蛋白-受体结合域(S-RBD)的SARS-CoV-2质粒DNA疫苗。产生与常规系统相当的特异性T细胞和抗体应答。使用基因枪的GET-gold-DNA载体的非物理和物理组合显示出作为替代DNA递送方法的潜力,该方法可用于大规模部署的疫苗接种和皮内基因递送。
    Physical-based gene delivery via biolistic methods (such as the Helios gene gun) involve precipitation of nucleic acids onto microparticles and direct transfection through cell membranes of exposed tissue (e.g. skin) by high velocity acceleration. The glycosaminoglycan (GAG)-binding enhanced transduction (GET) system exploits novel fusion peptides consisting of cell-binding, nucleic acid condensing, and cell-penetrating domains, which enable enhanced transfection across multiple cell types. In this study, we combined chemical (GET) and physical (gene gun) DNA delivery systems, and hypothesized the combination would generate enhanced distribution and effective uptake in cells not initially transfected by biolistic penetration. Physicochemical characterization, optimization of bullet contents and transfection experiments in vitro in cell monolayers and engineered tissue demonstrated these formulations transfected efficiently, including DC2.4 dendritic cells. We incorporated these formulations into a biolistic format for gene gun by forming fireable dry bullets obtained via lyophilization (freeze drying). This system is simple and with enhanced scalability compared to conventional methods to generate bullets. Flushed GET bullet contents retained their ability to mediate transfection (17-fold greater and 13-fold greater reporter gene expression than standard spermidine bullets in the absence and presence of serum, respectively). Fired GET bullets in vitro (in cells and collagen gels) and in vivo (mice) showed increased reporter gene transfection compared to untreated controls, whilst maintaining cell viability in vitro and having no obvious toxicity in vivo. Lastly, a SARS-CoV-2 plasmid DNA vaccine with spike (S) protein-receptor binding domain (S-RBD) was delivered by gene gun using GET bullets. Specific T cell and antibody responses comparable to the conventional system were generated. The non-physical and physical combination of GET‑gold-DNA carriers using gene gun shows potential as an alternative DNA delivery method that is scalable for mass deployable vaccination and intradermal gene delivery.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    使用感染性克隆接种植物病毒可以进行对照研究,从而更好地了解植物-病毒相互作用。用于双生病毒实验室接种的主要方法是农业接种和生物射弹。我们描述了如何成功接种双生病毒,专注于拟南芥作为模式植物和木薯作为作物。
    The use of infectious clones to inoculate plant viruses allows for controlled studies that lead to a better understanding of plant-virus interactions. The main methods used for laboratory inoculation of geminiviruses are agroinoculation and biolistics. We describe how to successfully inoculate geminiviruses, focusing on Arabidopsis as a model plant and cassava as a crop.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    燕麦(Avenasativa)作为一种多功能作物具有巨大的经济和营养价值。长期以来,它们一直被认为是人类消费和动物饲料的特殊选择。燕麦独特的成分,包括蛋白质,淀粉,和β-葡聚糖,导致其广泛用于各种食品,如面包,面条,薄片,和牛奶。由于越来越多的素食主义者/素食主义者和日益增长的环境意识,燕麦牛奶作为牛奶的纯素食替代品的受欢迎程度飙升。燕麦奶提供了一种可持续的选择,减少了生产过程中的温室气体排放,使其成为乳糖不耐受或有乳制品过敏的人的适当选择。为了确保提高适应性和增强营养,燕麦新品种的开发至关重要,考虑到种植等因素,气候,和生长条件。植物细胞培养在传统和当代育种方法中起着至关重要的作用。在经典育种中,植物细胞培养促进了双单倍体植物的快速生产,可以用来加速育种过程。在现代育种方法中,它能够在细胞水平上进行遗传操作和精确的基因组编辑。这篇综述探讨了燕麦的重要性及其多样化的应用,强调植物细胞培养在古典和现代育种方法中的优势。具体来说,它提供了植物组织培养的概述,包括遗传转化,单倍体技术,原生质体技术,和基因组编辑。
    Oats (Avena sativa) hold immense economic and nutritional value as a versatile crop. They have long been recognized as an exceptional choice for human consumption and animal feed. Oats\' unique components, including proteins, starches, and β-glucans, have led to its widespread use in various food products such as bread, noodles, flakes, and milk. The popularity of oat milk as a vegan alternative to dairy milk has soared due to the increasing number of vegetarians/vegans and growing environmental awareness. Oat milk offers a sustainable option with reduced greenhouse gas emissions during its production, rendering it an appropriate choice for individuals who are lactose-intolerant or have dairy allergies. To ensure improved adaptability and enhanced nutrition, the development of new oat varieties is crucial, considering factors like cultivation, climate, and growing conditions. Plant cell culture plays a crucial role in both traditional and contemporary breeding methods. In classical breeding, plant cell culture facilitates the rapid production of double haploid plants, which can be employed to accelerate the breeding process. In modern breeding methods, it enables genetic manipulation and precise genome editing at the cellular level. This review delves into the importance of oats and their diverse applications, highlighting the advantages of plant cell culture in both classical and modern breeding methods. Specifically, it provides an overview of plant tissue culture, encompassing genetic transformation, haploid technology, protoplast technology, and genome editing.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Review
    目前,只有在酿酒酵母和藻类衣藻中,才能通过生物射弹转化将基因插入线粒体。酿酒酵母线粒体可以存在线粒体DNA(mtDNA)的部分(ρ-突变体)或完全缺失(ρ0突变体),不需要特定的复制起点,使得外源序列能够繁殖。此外,这种生物体中的mtDNA经历有效的同源重组,使其非常适合基因操作。在这次审查中,我们对生物射弹转化的发展进行了概述,并讨论了该技术的标志性应用。我们还提供了一个详细的例子,说明如何获得线粒体基因组中重组外源DNA的转化体。
    The insertion of genes into mitochondria by biolistic transformation is currently only possible in the yeast Saccharomyces cerevisiae and the algae Chlamydomonas reinhardtii. The fact that S. cerevisiae mitochondria can exist with partial (ρ- mutants) or complete deletions (ρ0 mutants) of mitochondrial DNA (mtDNA), without requiring a specific origin of replication, enables the propagation of exogenous sequences. Additionally, mtDNA in this organism undergoes efficient homologous recombination, making it well-suited for genetic manipulation. In this review, we present a summarized historical overview of the development of biolistic transformation and discuss iconic applications of the technique. We also provide a detailed example on how to obtain transformants with recombined foreign DNA in their mitochondrial genome.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    迄今为止,基于针和注射器的递送一直是疫苗施用的商业标准。随着医务人员供应的恶化,增加生物危害废物的产生,以及交叉污染的可能性,我们探讨了生物射弹递送作为另一种基于皮肤的递送途径的可能性.如脂质体的精致制剂固有地不适合于这种递送模型,因为它们是不能承受剪切应力的易碎生物材料,并且极难配制成用于室温储存的冻干粉末。在这里,我们已经开发了一种通过将脂质体包封在由沸石咪唑酯框架-8(ZIF-8)制成的纳米尺寸的壳中来将脂质体生物射弹地递送到皮肤中的方法。当封装在晶体和刚性涂层中时,脂质体不仅受到热应力的保护,还有剪应力。这种免受压力的保护是至关重要的,特别是对于具有包封在脂质体内腔内的货物的制剂。此外,涂层为脂质体提供了固体外部,其允许颗粒有效地穿透皮肤。在这项工作中,我们探讨了ZIF-8为脂质体提供的机械保护,作为使用生物射弹递送替代基于注射器和针头的疫苗递送的初步研究.我们证明了具有各种表面电荷的脂质体可以使用合适的条件用ZIF-8包被,这种涂层可以很容易地去除,而不会对受保护的材料造成任何损害。当递送到琼脂糖组织模型和猪皮肤组织中时,保护性涂层防止脂质体泄漏货物并有助于它们的有效渗透。
    Needle-and-syringe-based delivery has been the commercial standard for vaccine administration to date. With worsening medical personnel availability, increasing biohazard waste production, and the possibility of cross-contamination, we explore the possibility of biolistic delivery as an alternate skin-based delivery route. Delicate formulations like liposomes are inherently unsuitable for this delivery model as they are fragile biomaterials incapable of withstanding shear stress and are exceedingly difficult to formulate as a lyophilized powder for room temperature storage. Here we have developed a approach to deliver liposomes into the skin biolistically-by encapsulating them in a nano-sized shell made of Zeolitic Imidazolate Framework-8 (ZIF-8). When encapsulated within a crystalline and rigid coating, the liposomes are not only protected from thermal stress, but also shear stress. This protection from stressors is crucial, especially for formulations with cargo encapsulated inside the lumen of the liposomes. Moreover, the coating provides the liposomes with a solid exterior that allows the particles to penetrate the skin effectively. In this work, we explored the mechanical protection ZIF-8 provides to liposomes as a preliminary investigation for using biolistic delivery as an alternative to syringe-and-needle-based delivery of vaccines. We demonstrated that liposomes with a variety of surface charges could be coated with ZIF-8 using the right conditions, and this coating can be just as easily removed-without causing any damage to the protected material. The protective coating prevented the liposomes from leaking cargo and helped in their effective penetration when delivered into the agarose tissue model and porcine skin tissue.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号