ADP-ribosylation

ADP - 核糖基化
  • 文章类型: Journal Article
    生物体内的代谢受各种过程的调节,包括翻译后修饰(PTM)。这些类型的化学修饰改变了分子,生物化学,和蛋白质的细胞特性,并允许生物体对不同的环境做出快速反应,能量状态,和压力。苹果酸脱氢酶(MDH)是一种代谢酶,在生命的所有领域都是保守的,并且在翻译后被广泛修饰。由于MDH的核心作用,它的修饰可以改变代谢通量,包括克雷布斯周期,糖酵解,和脂质和氨基酸代谢。尽管MDH及其广泛的翻译后修改景观的重要性,MDHPTM的综合表征,以及它们对MDH结构的影响,函数,代谢通量仍未充分开发。这里,我们回顾了三种类型的MDHPTM-乙酰化,ADP-核糖基化,和甲基化-并探索文献中已知的内容以及这些PTM如何潜在影响3D结构,酶活性,和MDH的相互作用。最后,我们简要讨论了PTM在包括MDH在内的代谢物动力学中的潜在参与。
    Metabolism within an organism is regulated by various processes, including post-translational modifications (PTMs). These types of chemical modifications alter the molecular, biochemical, and cellular properties of proteins and allow the organism to respond quickly to different environments, energy states, and stresses. Malate dehydrogenase (MDH) is a metabolic enzyme that is conserved in all domains of life and is extensively modified post-translationally. Due to the central role of MDH, its modification can alter metabolic flux, including the Krebs cycle, glycolysis, and lipid and amino acid metabolism. Despite the importance of both MDH and its extensively post-translationally modified landscape, comprehensive characterization of MDH PTMs, and their effects on MDH structure, function, and metabolic flux remains underexplored. Here, we review three types of MDH PTMs - acetylation, ADP-ribosylation, and methylation - and explore what is known in the literature and how these PTMs potentially affect the 3D structure, enzymatic activity, and interactome of MDH. Finally, we briefly discuss the potential involvement of PTMs in the dynamics of metabolons that include MDH.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    DNA双链断裂(DSB)引发对信号损伤的精心反应,并通过两个主要途径触发修复:非同源末端连接(NHEJ),它在整个相间都起作用,和同源重组(HR),仅限于S/G2阶段。DNA损伤反应(DDR)依赖于,关于核因子的翻译后修饰,以协调断裂的修补。组蛋白和染色质相关因子的泛素化调节DSB修复,许多E3泛素连接酶参与此过程。尽管取得了重大进展,我们对泛素介导的DDR调节的理解仍然不完整.这里,我们进行了定位筛选,以鉴定参与基因组维持的RING/U-boxE3连接酶.我们的方法发现了7种被招募到微辐照条纹的新型E3连接酶,提示在DNA损伤信号和修复中的潜在作用。在这些因素中,DELTEX家族E3连接酶DTX2以聚ADP-核糖基化依赖性方式迅速转移至病变。DTX2通过其WWE和DTC域被招募和保留在DSB。在细胞中,这两个结构域都是与单和聚ADP核糖基化蛋白的最佳结合所必需的,WWE在此过程中起着重要作用。支持其参与DSB修复,DTX2耗竭降低HR效率并适度增强NHEJ。此外,DTX2耗尽阻碍了BRCA1病灶的形成,并增加了DSB的53BP1积累,提示这种E3连接酶在修复途径选择中的微调作用。最后,DTX2耗竭使癌细胞对X射线和PARP抑制敏感,而DTX2的再表达可以挽救这些敏感性。总之,我们的工作确定DTX2是HR介导的DSB修复的新型ADP-核糖基化依赖性调节因子.
    DNA double-strand breaks (DSBs) elicit an elaborate response to signal damage and trigger repair via two major pathways: non-homologous end-joining (NHEJ), which functions throughout the interphase, and homologous recombination (HR), restricted to S/G2 phases. The DNA damage response (DDR) relies, on post-translational modifications of nuclear factors to coordinate the mending of breaks. Ubiquitylation of histones and chromatin-associated factors regulates DSB repair and numerous E3 ubiquitin ligases are involved in this process. Despite significant progress, our understanding of ubiquitin-mediated DDR regulation remains incomplete. Here, we have performed a localization screen to identify RING/U-box E3 ligases involved in genome maintenance. Our approach uncovered 7 novel E3 ligases that are recruited to microirradiation stripes, suggesting potential roles in DNA damage signaling and repair. Amongst these factors, the DELTEX family E3 ligase DTX2 is rapidly mobilized to lesions in a poly ADP-ribosylation-dependent manner. DTX2 is recruited and retained at DSBs via its WWE and DTC domains. In cells, both domains are required for optimal binding to mono and poly ADP-ribosylated proteins with WWEs playing a prominent role in this process. Supporting its involvement in DSB repair, DTX2 depletion decreases HR efficiency and moderately enhances NHEJ. Furthermore, DTX2 depletion impeded BRCA1 foci formation and increased 53BP1 accumulation at DSBs, suggesting a fine-tuning role for this E3 ligase in repair pathway choice. Finally, DTX2 depletion sensitized cancer cells to X-rays and PARP inhibition and these susceptibilities could be rescued by DTX2 re-expression. Altogether, our work identifies DTX2 as a novel ADP-ribosylation-dependent regulator of HR-mediated DSB repair.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    ADP核糖基化(ADPr)信号在DNA损伤反应中起着至关重要的作用。针对DNA损伤后催化ADPr的主要酶的抑制剂,聚(ADP-核糖)聚合酶1(PARP1),用于治疗携带BRCA1/2突变的乳腺癌患者。然而,对PARP抑制剂(PARPi)的耐药性是治疗患者的主要障碍。为了了解ADPr在PARPi敏感性中的作用,我们使用液相色谱-串联质谱(LC-MS/MS)分析了六种表现出不同PARPi敏感性的乳腺癌细胞系中的ADPr。我们在所有细胞系的777个蛋白质上鉴定了1,632个位点,主要是在丝氨酸残基上,所有细胞系中DNA损伤相关蛋白的靶向残基存在位点特异性重叠,证明DNA损伤后丝氨酸ADPr信号网络的高度保守性。此外,我们观察到PARPi敏感BRCA突变体中ADPr强度的位点特异性差异和PARPi抗性BRCA突变体HCC1937细胞中独特的ADPr位点,其具有低的聚(ADP-核糖)糖水解酶(PARG)水平和PARP1上更长的ADPr链。
    ADP-ribosylation (ADPr) signaling plays a crucial role in DNA damage response. Inhibitors against the main enzyme catalyzing ADPr after DNA damage, poly(ADP-ribose) polymerase 1 (PARP1), are used to treat patients with breast cancer harboring BRCA1/2 mutations. However, resistance to PARP inhibitors (PARPi) is a major obstacle in treating patients. To understand the role of ADPr in PARPi sensitivity, we use liquid chromatography-tandem mass spectrometry (LC-MS/MS) to analyze ADPr in six breast cancer cell lines exhibiting different PARPi sensitivities. We identify 1,632 sites on 777 proteins across all cell lines, primarily on serine residues, with site-specific overlap of targeted residues across DNA-damage-related proteins across all cell lines, demonstrating high conservation of serine ADPr-signaling networks upon DNA damage. Furthermore, we observe site-specific differences in ADPr intensities in PARPi-sensitive BRCA mutants and unique ADPr sites in PARPi-resistant BRCA-mutant HCC1937 cells, which have low poly(ADP-ribose) glycohydrolase (PARG) levels and longer ADPr chains on PARP1.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细胞和分子对DNA损伤的反应是高度协调和动态的,保护基因组的维持和完整性。组蛋白结合DNA并将基因组组织成染色质。已显示组蛋白的翻译后修饰通过调节DNA损伤应答途径在协调染色质对DNA损伤的应答中起重要作用。在促成这个复杂网络的组蛋白修饰中,组蛋白ADP-核糖基化(ADPr)正在成为基于染色质的DNA损伤反应(DDR)途径的关键组成部分。在这次审查中,我们调查了如何调节组蛋白ADPr以促进DDR,以及它如何影响染色质和其他组蛋白标记。最近的进展揭示了组蛋白ADPr对染色质结构的影响以及对DNA损伤的DNA修复因子募集的调节。此外,我们重点介绍了技术的进步,这些进步使得能够在细胞中以及对DNA损伤的应答中鉴定和功能验证组蛋白ADPr.鉴于DNA损伤和表观遗传调控参与人类疾病包括癌症,这些发现对组蛋白ADPr有临床意义,也在讨论中。总的来说,本综述涵盖了组蛋白ADPr在DDR中的参与,并强调了旨在确定参与DDR的组蛋白ADPr控制的机制的潜在未来研究,人类疾病,和他们的治疗。
    Cellular and molecular responses to DNA damage are highly orchestrated and dynamic, acting to preserve the maintenance and integrity of the genome. Histone proteins bind DNA and organize the genome into chromatin. Post-translational modifications of histones have been shown to play an essential role in orchestrating the chromatin response to DNA damage by regulating the DNA damage response pathway. Among the histone modifications that contribute to this intricate network, histone ADP-ribosylation (ADPr) is emerging as a pivotal component of chromatin-based DNA damage response (DDR) pathways. In this review, we survey how histone ADPr is regulated to promote the DDR and how it impacts chromatin and other histone marks. Recent advancements have revealed histone ADPr effects on chromatin structure and the regulation of DNA repair factor recruitment to DNA lesions. Additionally, we highlight advancements in technology that have enabled the identification and functional validation of histone ADPr in cells and in response to DNA damage. Given the involvement of DNA damage and epigenetic regulation in human diseases including cancer, these findings have clinical implications for histone ADPr, which are also discussed. Overall, this review covers the involvement of histone ADPr in the DDR and highlights potential future investigations aimed at identifying mechanisms governed by histone ADPr that participate in the DDR, human diseases, and their treatments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    聚(ADP-核糖)聚合酶1(PARP1)由于PARP抑制剂通过同源重组特异性杀死DNA修复缺陷的肿瘤的能力而成为癌症治疗的中心靶标。DNA损伤后,PARP1快速结合DNA断裂并触发ADP-核糖基化信号传导。ADP-核糖基化对于将各种因素募集到损伤位点是重要的,以及PARP1与DNA断裂的及时解离。的确,在PARP抑制剂的存在下,PARP1在DNA断裂处被捕获,这些抑制剂细胞毒性的潜在机制。因此,任何影响捕获的细胞过程都被认为会影响PARP抑制剂的效率,这些药物治疗的患者可能导致获得性耐药。DNA损伤后有许多ADP核糖基化靶标,包括PARP1本身以及组蛋白。虽然最近的研究发现,PARP1的自动修饰促进了它从DNA损伤中的释放,其他ADP-核糖基化蛋白对该过程的潜在影响尚不清楚.这里,我们证明组蛋白ADP-核糖基化对于PARP1从病变中及时消散也至关重要,从而导致细胞对PARP抑制剂的耐药性。考虑到ADP-核糖基化和其他组蛋白标记之间的串扰,我们的发现为开发更有效的PARP抑制剂驱动的癌症治疗打开了有趣的观点.
    Poly(ADP-ribose) polymerase 1 (PARP1) has emerged as a central target for cancer therapies due to the ability of PARP inhibitors to specifically kill tumors deficient for DNA repair by homologous recombination. Upon DNA damage, PARP1 quickly binds to DNA breaks and triggers ADP-ribosylation signaling. ADP-ribosylation is important for the recruitment of various factors to sites of damage, as well as for the timely dissociation of PARP1 from DNA breaks. Indeed, PARP1 becomes trapped at DNA breaks in the presence of PARP inhibitors, a mechanism underlying the cytotoxitiy of these inhibitors. Therefore, any cellular process influencing trapping is thought to impact PARP inhibitor efficiency, potentially leading to acquired resistance in patients treated with these drugs. There are numerous ADP-ribosylation targets after DNA damage, including PARP1 itself as well as histones. While recent findings reported that the automodification of PARP1 promotes its release from the DNA lesions, the potential impact of other ADP-ribosylated proteins on this process remains unknown. Here, we demonstrate that histone ADP-ribosylation is also crucial for the timely dissipation of PARP1 from the lesions, thus contributing to cellular resistance to PARP inhibitors. Considering the crosstalk between ADP-ribosylation and other histone marks, our findings open interesting perspectives for the development of more efficient PARP inhibitor-driven cancer therapies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    PARP催化的ADP核糖基化(ADPr)在调节各种细胞途径中很重要。直到最近,PARP依赖性单-ADP-核糖基化由于缺乏灵敏的检测方法而知之甚少。这里,我们利用改进的抗体来检测单ADP核糖基化。我们观察了内源性干扰素(IFN)诱导的ADP-核糖基化,并表明PARP14是负责这种修饰的主要酶。恰到好处,这种信号被SARS-CoV-2(Mac1)的宏域逆转,提供Mac1抵消抗病毒PARP活性的可能机制。我们的数据还阐明了PARP9及其结合伴侣的主要作用,E3泛素连接酶DTX3L,通过蛋白质-蛋白质相互作用和PARP9巨域1的水解活性调节PARP14活性。最后,我们还介绍了IFN应答中ADPr依赖性泛素化的首次可视化。这些方法应进一步促进我们对IFN诱导的ADPr和泛素信号传导过程的理解,并可能阐明不同病原体如何避免此类防御途径。
    PARP-catalysed ADP-ribosylation (ADPr) is important in regulating various cellular pathways. Until recently, PARP-dependent mono-ADP-ribosylation has been poorly understood due to the lack of sensitive detection methods. Here, we utilised an improved antibody to detect mono-ADP-ribosylation. We visualised endogenous interferon (IFN)-induced ADP-ribosylation and show that PARP14 is a major enzyme responsible for this modification. Fittingly, this signalling is reversed by the macrodomain from SARS-CoV-2 (Mac1), providing a possible mechanism by which Mac1 counteracts the activity of antiviral PARPs. Our data also elucidate a major role of PARP9 and its binding partner, the E3 ubiquitin ligase DTX3L, in regulating PARP14 activity through protein-protein interactions and by the hydrolytic activity of PARP9 macrodomain 1. Finally, we also present the first visualisation of ADPr-dependent ubiquitylation in the IFN response. These approaches should further advance our understanding of IFN-induced ADPr and ubiquitin signalling processes and could shed light on how different pathogens avoid such defence pathways.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    蛋白质ADP-核糖基化在抗病毒信号级联如干扰素应答中起着重要但不明确的作用。几种临床感兴趣的病毒,包括冠状病毒,表达由宿主酶催化的逆转ADP核糖基化的水解酶,提示这种修饰在宿主-病原体相互作用中的重要作用。然而,其中ADP-核糖基转移酶介导宿主ADP-核糖基化,它们靶向的蛋白质和途径以及这些修饰如何影响病毒感染和发病机制目前尚不清楚。在这里,我们表明由IFNγ信号诱导的宿主ADP-核糖基转移酶活性取决于PARP14催化活性,并且PARP9/DTX3L复合物需要通过翻译后机制维持PARP14蛋白水平。PARP9/DTX3L复合物和PARP14均位于IFNγ诱导的含有ADP核糖基化蛋白的细胞质包涵体,PARP14本身和DTX3L都可能是PARP14ADP核糖基化的靶标。我们提供的证据表明,这些修饰被SARS-CoV-2Nsp3宏域水解,揭示了IFN诱导的ADP-核糖基转移酶之间复杂的交叉调节以及冠状病毒宏观结构域在抵消其活性中的潜在作用。
    Protein ADP-ribosylation plays important but ill-defined roles in antiviral signalling cascades such as the interferon response. Several viruses of clinical interest, including coronaviruses, express hydrolases that reverse ADP-ribosylation catalysed by host enzymes, suggesting an important role for this modification in host-pathogen interactions. However, which ADP-ribosyltransferases mediate host ADP-ribosylation, what proteins and pathways they target and how these modifications affect viral infection and pathogenesis is currently unclear. Here we show that host ADP-ribosyltransferase activity induced by IFNγ signalling depends on PARP14 catalytic activity and that the PARP9/DTX3L complex is required to uphold PARP14 protein levels via post-translational mechanisms. Both the PARP9/DTX3L complex and PARP14 localise to IFNγ-induced cytoplasmic inclusions containing ADP-ribosylated proteins, and both PARP14 itself and DTX3L are likely targets of PARP14 ADP-ribosylation. We provide evidence that these modifications are hydrolysed by the SARS-CoV-2 Nsp3 macrodomain, shedding light on the intricate cross-regulation between IFN-induced ADP-ribosyltransferases and the potential roles of the coronavirus macrodomain in counteracting their activity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    衰老,一个复杂的生物过程,在多种疾病的发展中起着关键作用,这些疾病被称为涉及心血管疾病的衰老相关疾病,中风,神经退行性疾病,癌症,脂质代谢相关疾病。ADP-核糖基化是对蛋白质和核酸的可逆修饰以改变其结构和/或功能。越来越多的证据支持ADP-核糖基化和ADP-核糖基化相关酶在衰老和年龄相关疾病中的重要性。在这次审查中,我们总结了ADP-核糖基化相关蛋白,包括ADP-核糖基转移酶,ADP-核糖基水解和ADP-核糖结合域。此外,我们概述了ADP核糖基化在主要衰老相关疾病的发病机制和进展中的最新知识,生物体衰老和细胞衰老,我们还推测了更好地揭示这种新型分子网络的潜在机制。此外,我们讨论了当前的问题,并对未来的研究进行了展望,旨在揭示ADP核糖基化的未知生物特性,并通过靶向ADP-核糖基化在衰老相关疾病和健康衰老中建立了新的治疗观点。
    Aging, a complex biological process, plays key roles the development of multiple disorders referred as aging-related diseases involving cardiovascular diseases, stroke, neurodegenerative diseases, cancers, lipid metabolism-related diseases. ADP-ribosylation is a reversible modification onto proteins and nucleic acids to alter their structures and/or functions. Growing evidence support the importance of ADP-ribosylation and ADP-ribosylation-associated enzymes in aging and age-related diseases. In this review, we summarized ADP-ribosylation-associated proteins including ADP-ribosyl transferases, the ADP-ribosyl hydrolyses and ADP-ribose binding domains. Furthermore, we outlined the latest knowledge about regulation of ADP-ribosylation in the pathogenesis and progression of main aging-related diseases, organism aging and cellular senescence, and we also speculated the underlying mechanisms to better disclose this novel molecular network. Moreover, we discussed current issues and provided an outlook for future research, aiming to revealing the unknown bio-properties of ADP-ribosylation, and establishing a novel therapeutic perspective in aging-related diseases and health aging via targeting ADP-ribosylation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Retrons是毒素-抗毒素系统,可通过流产感染保护细菌免受噬菌体的侵害。Retron-Eco1抗毒素由逆转录酶(RT)和非编码RNA(ncRNA)/多拷贝单链DNA(msDNA)杂交体形成,可中和未表征的毒性效应子。然而,噬菌体防御的分子机制仍然未知。这里,我们表明,N-糖苷酶效应子,属于STIR超家族,在感染期间水解NAD+。冷冻电子显微镜(cryo-EM)分析表明,msDNA稳定了将效应子笼罩成低活性状态的细丝,其中ADPr,NAD+水解产物,共价连接至催化E106残基。缩短msDNA的突变诱导细丝分解和效应子的毒性,强调msDNA在免疫中的作用。此外,我们发现了一种噬菌体编码的Retron-Eco1抑制剂(U56),可以结合ADPr,强调retron系统和噬菌体进化之间复杂的相互作用。我们的工作概述了Retron-Eco1防御的结构基础,揭示ADPr在免疫中的关键作用。
    Retrons are toxin-antitoxin systems protecting bacteria against bacteriophages via abortive infection. The Retron-Eco1 antitoxin is formed by a reverse transcriptase (RT) and a non-coding RNA (ncRNA)/multi-copy single-stranded DNA (msDNA) hybrid that neutralizes an uncharacterized toxic effector. Yet, the molecular mechanisms underlying phage defense remain unknown. Here, we show that the N-glycosidase effector, which belongs to the STIR superfamily, hydrolyzes NAD+ during infection. Cryoelectron microscopy (cryo-EM) analysis shows that the msDNA stabilizes a filament that cages the effector in a low-activity state in which ADPr, a NAD+ hydrolysis product, is covalently linked to the catalytic E106 residue. Mutations shortening the msDNA induce filament disassembly and the effector\'s toxicity, underscoring the msDNA role in immunity. Furthermore, we discovered a phage-encoded Retron-Eco1 inhibitor (U56) that binds ADPr, highlighting the intricate interplay between retron systems and phage evolution. Our work outlines the structural basis of Retron-Eco1 defense, uncovering ADPr\'s pivotal role in immunity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    最近的发现确立了DNA和RNA作为ADP-核糖基化的真正底物。NADAR(“NAD-和ADP-核糖”相关)酶逆转鸟嘌呤ADP-核糖基化并在DarT-NADAR操纵子中充当抗毒素。尽管NADAR在原核生物中普遍存在,真核生物,和病毒,它们的特异性和更广泛的生理作用仍然知之甚少。利用系统发育和生化分析,我们进一步探讨了NADAR结构域的去ADP核糖基化活性和抗毒素功能。我们证明了来自代表性大肠杆菌菌株和大肠杆菌感染噬菌体的NADAR蛋白的不同亚家族保留了生化活性,同时在提供保护免受细胞中毒性鸟嘌呤ADP-核糖基化方面表现出特异性。此外,我们确定了YbiA亚家族中的一种粘细菌酶,该酶可作为其相关的DarT无关ART毒素的抗毒素,我们称之为YarT,因此提供了迄今为止未表征的ART-YbiA毒素-抗毒素对。我们的研究有助于DNAADP核糖基化的新兴领域,支持其在细菌毒素-抗毒素系统内外的生理相关性。值得注意的是,NADARs的特异性和对非哺乳动物的限制推断它们可能作为抗微生物药物的高度特异性靶标而具有最小的脱靶效应.
    Recent discoveries establish DNA and RNA as bona fide substrates for ADP-ribosylation. NADAR (\"NAD- and ADP-ribose\"-associated) enzymes reverse guanine ADP-ribosylation and serve as antitoxins in the DarT-NADAR operon. Although NADARs are widespread across prokaryotes, eukaryotes, and viruses, their specificity and broader physiological roles remain poorly understood. Using phylogenetic and biochemical analyses, we further explore de-ADP-ribosylation activity and antitoxin functions of NADAR domains. We demonstrate that different subfamilies of NADAR proteins from representative E. coli strains and an E. coli-infecting phage retain biochemical activity while displaying specificity in providing protection from toxic guanine ADP-ribosylation in cells. Furthermore, we identify a myxobacterial enzyme within the YbiA subfamily that functions as an antitoxin for its associated DarT-unrelated ART toxin, which we termed YarT, thus presenting a hitherto uncharacterised ART-YbiA toxin-antitoxin pair. Our studies contribute to the burgeoning field of DNA ADP-ribosylation, supporting its physiological relevance within and beyond bacterial toxin-antitoxin systems. Notably, the specificity and confinement of NADARs to non-mammals infer their potential as highly specific targets for antimicrobial drugs with minimal off-target effects.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号