ADP-ribosylation

ADP - 核糖基化
  • 文章类型: Journal Article
    ADP-核糖基化是蛋白质和其他靶标的普遍存在的修饰,如核酸,调节所有生命王国的各种细胞功能。此外,这些ADP-核糖基转移酶(ARTs)修饰各种底物和原子。自发现ADP-核糖基化至今已有近60年。已经用辅因子(NAD+或NAD+类似物)揭示了各种ART结构。然而,我们仍然不知道ART的分子机制。需要更好地理解ART如何指定目标氨基酸或碱基。为此,需要更多关于ART的三方复杂结构的信息,辅因子,和基材。三方复合物对于理解ADP-核糖基转移酶的机制至关重要。本文综述了基于ART三方复合物结构的ADP核糖基化的一般机制。
    ADP-ribosylation is a ubiquitous modification of proteins and other targets, such as nucleic acids, that regulates various cellular functions in all kingdoms of life. Furthermore, these ADP-ribosyltransferases (ARTs) modify a variety of substrates and atoms. It has been almost 60 years since ADP-ribosylation was discovered. Various ART structures have been revealed with cofactors (NAD+ or NAD+ analog). However, we still do not know the molecular mechanisms of ART. It needs to be better understood how ART specifies the target amino acids or bases. For this purpose, more information is needed about the tripartite complex structures of ART, the cofactors, and the substrates. The tripartite complex is essential to understand the mechanism of ADP-ribosyltransferase. This review updates the general ADP-ribosylation mechanism based on ART tripartite complex structures.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    三阴性乳腺癌(TNBC),占所有乳腺癌的10-20%,是侵略性的,具有很高的转移潜力,由于治疗选择有限,预后不良。LT-IIc,与一组独特的细胞表面神经节苷脂受体结合的ADP-核糖基化热不稳定肠毒素的II型亚家族成员对TNBC细胞系具有细胞毒性,但对未转化的乳腺上皮细胞没有细胞毒活性。这里,原代TNBC细胞,从切除的人类肿瘤中分离出来,表现出特异性针对LT-IIc的增强的细胞毒性反应,与测试的其他肠毒素相反。MDA-MB-231细胞,TNBC的模型,用于评估LT-IIc细胞毒性的潜在机制,诱导细胞内cAMP升高并刺激cAMP反应元件结合蛋白(CREB)信号通路。为了剖析ADP-核糖基化的作用,cAMP诱导,和细胞毒性反应中的神经节苷脂连接,MDA-MB-231细胞暴露于野生型LT-IIc,缺乏ADP-核糖基化A多肽的LT-IIc的重组B-五聚体,或具有酶灭活的A1结构域的LT-IIc突变体。这些实验表明,LT-IIc的ADP-核糖基转移酶活性对于诱导MDA-MB-231细胞的致死性是非必需的。相比之下,神经节苷脂结合活性改变的突变LT-IIc未能在MDA-MB-231细胞中触发细胞毒性反应。此外,神经节苷脂表达的药理学抑制保护MDA-MB-231细胞免受LT-IIc的细胞毒性作用。这些数据证明神经节苷脂结扎,但不诱导cAMP产生或ADP-核糖基转移酶活性,是启动MDA-MB-231细胞的LT-IIc依赖性细胞死亡所必需的。这些实验揭示了LT-IIc和神经节苷脂在信号转导中先前未知的特性,提供了靶向治疗TNBC的潜力,一个迫切需要的选择。
    Triple-negative breast cancer (TNBC), which constitutes 10-20 percent of all breast cancers, is aggressive, has high metastatic potential, and carries a poor prognosis due to limited treatment options. LT-IIc, a member of the type II subfamily of ADP-ribosylating-heat-labile enterotoxins that bind to a distinctive set of cell-surface ganglioside receptors-is cytotoxic toward TNBC cell lines, but has no cytotoxic activity for non-transformed breast epithelial cells. Here, primary TNBC cells, isolated from resected human tumors, showed an enhanced cytotoxic response specifically toward LT-IIc, in contrast to other enterotoxins that were tested. MDA-MB-231 cells, a model for TNBC, were used to evaluate potential mechanisms of cytotoxicity by LT-IIc, which induced elevated intracellular cAMP and stimulated the cAMP response element-binding protein (CREB) signaling pathway. To dissect the role of ADP-ribosylation, cAMP induction, and ganglioside ligation in the cytotoxic response, MDA-MB-231 cells were exposed to wild-type LT-IIc, the recombinant B-pentamer of LT-IIc that lacks the ADP-ribosylating A polypeptide, or mutants of LT-IIc with an enzymatically inactivated A1-domain. These experiments revealed that the ADP-ribosyltransferase activity of LT-IIc was nonessential for inducing the lethality of MDA-MB-231 cells. In contrast, a mutant LT-IIc with an altered ganglioside binding activity failed to trigger a cytotoxic response in MDA-MB-231 cells. Furthermore, the pharmacological inhibition of ganglioside expression protected MDA-MB-231 cells from the cytotoxic effects of LT-IIc. These data establish that ganglioside ligation, but not the induction of cAMP production nor ADP-ribosyltransferase activity, is essential to initiating the LT-IIc-dependent cell death of MDA-MB-231 cells. These experiments unveiled previously unknown properties of LT-IIc and gangliosides in signal transduction, offering the potential for the targeted treatment of TNBC, an option that is desperately needed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    谷氨酰-氨甲酰-tRNA合成酶(EPRS1)是一种双功能氨酰基-tRNA合成酶(aaRS),对于解码遗传密码至关重要。EPRS1驻留,与其他七个aaRS和三个非催化蛋白,在细胞质多tRNA合成酶复合物(MSC)中。多个MSC驻留aaRS,包括EPRS1,表现出从MSC的刺激依赖性释放,以执行与其在蛋白质合成中的主要功能不同的非规范活动。这里,我们显示EPRS1存在于组成型低磷酸酶和张力蛋白同源物(PTEN)表达的乳腺癌细胞的细胞质和细胞核中。EPRS1主要是表达PTEN的细胞,但是对PTEN的化学或遗传抑制作用,或其靶标的化学或应激介导的激活,AKT,诱导EPRS1核定位。同样,在浸润性导管癌中观察到EPRS1的优先核定位,也是P-Ser473-AKT。EPRS1核转运需要连接催化谷氨酰-tRNA合成酶和脯氨酸酰-tRNA合成酶结构域的接头区域内的核定位信号(NLS)。核EPRS1与聚(ADP-核糖)聚合酶1(PARP1)相互作用,一种DNA损伤传感器,可指导蛋白质的聚(ADP-核糖基)化(PARylation)。EPRS1是PARP1活性的关键调节因子,如EPRS1敲低细胞中ADP-核糖基化显著降低所示。此外,EPRS1和PARP1敲低可比较地改变多个肿瘤相关基因的表达,抑制DNA损伤修复,降低肿瘤细胞存活率,并减少乳腺癌细胞形成的肿瘤球。EPRS1介导的PARP1活性调节提供了乳腺癌细胞中PTEN缺失之间的机制联系,PARP1激活,细胞存活和肿瘤生长。靶向EPRS1的非规范活性,而不抑制规范的tRNA连接酶活性,提供了一种潜在补充现有PARP1抑制剂的治疗方法。
    Glutamyl-prolyl-tRNA synthetase (EPRS1) is a bifunctional aminoacyl-tRNA-synthetase (aaRS) essential for decoding the genetic code. EPRS1 resides, with seven other aaRSs and three noncatalytic proteins, in the cytoplasmic multi-tRNA synthetase complex (MSC). Multiple MSC-resident aaRSs, including EPRS1, exhibit stimulus-dependent release from the MSC to perform noncanonical activities distinct from their primary function in protein synthesis. Here, we show EPRS1 is present in both cytoplasm and nucleus of breast cancer cells with constitutively low phosphatase and tensin homolog (PTEN) expression. EPRS1 is primarily cytosolic in PTEN-expressing cells, but chemical or genetic inhibition of PTEN, or chemical or stress-mediated activation of its target, AKT, induces EPRS1 nuclear localization. Likewise, preferential nuclear localization of EPRS1 was observed in invasive ductal carcinoma that were also P-Ser473-AKT+. EPRS1 nuclear transport requires a nuclear localization signal (NLS) within the linker region that joins the catalytic glutamyl-tRNA synthetase and prolyl-tRNA synthetase domains. Nuclear EPRS1 interacts with poly(ADP-ribose) polymerase 1 (PARP1), a DNA-damage sensor that directs poly(ADP-ribosyl)ation (PARylation) of proteins. EPRS1 is a critical regulator of PARP1 activity as shown by markedly reduced ADP-ribosylation in EPRS1 knockdown cells. Moreover, EPRS1 and PARP1 knockdown comparably alter the expression of multiple tumor-related genes, inhibit DNA-damage repair, reduce tumor cell survival, and diminish tumor sphere formation by breast cancer cells. EPRS1-mediated regulation of PARP1 activity provides a mechanistic link between PTEN loss in breast cancer cells, PARP1 activation, and cell survival and tumor growth. Targeting the noncanonical activity of EPRS1, without inhibiting canonical tRNA ligase activity, provides a therapeutic approach potentially supplementing existing PARP1 inhibitors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    胞内细菌病原体嗜肺军团菌通过分泌具有多种生化活性的多种效应物调节宿主细胞功能。特别是,SidE家族的效应子在涉及磷酸核糖泛素(PR-Ub)产生的过程中干扰宿主蛋白的泛素化。这里,我们显示效应LnaB将PR-Ub转化为ADP-核糖基化泛素,通过(ADP-核糖基)水解酶MavL进一步加工为ADP-核糖和功能性泛素,从而维持感染细胞中的泛素稳态。在被肌动蛋白激活后,LnaB还在酪氨酸残基上经历自AMPylation。LnaB的活性需要一个由Ser组成的主题,His和Glu(SHxxxE)存在于来自多种细菌病原体的一大类毒素中。因此,我们的研究揭示了病原体维持泛素稳态的机制,并鉴定了能够进行蛋白质AMPylation的酶家族.
    The intracellular bacterial pathogen Legionella pneumophila modulates host cell functions by secreting multiple effectors with diverse biochemical activities. In particular, effectors of the SidE family interfere with host protein ubiquitination in a process that involves production of phosphoribosyl ubiquitin (PR-Ub). Here, we show that effector LnaB converts PR-Ub into ADP-ribosylated ubiquitin, which is further processed to ADP-ribose and functional ubiquitin by the (ADP-ribosyl)hydrolase MavL, thus maintaining ubiquitin homeostasis in infected cells. Upon being activated by actin, LnaB also undergoes self-AMPylation on tyrosine residues. The activity of LnaB requires a motif consisting of Ser, His and Glu (SHxxxE) present in a large family of toxins from diverse bacterial pathogens. Thus, our study sheds light on the mechanisms by which a pathogen maintains ubiquitin homeostasis and identifies a family of enzymes capable of protein AMPylation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    聚(ADP-核糖)聚合酶1(PARP1)由于PARP抑制剂通过同源重组特异性杀死DNA修复缺陷的肿瘤的能力而成为癌症治疗的中心靶标。DNA损伤后,PARP1快速结合DNA断裂并触发ADP-核糖基化信号传导。ADP-核糖基化对于将各种因素募集到损伤位点是重要的,以及PARP1与DNA断裂的及时解离。的确,在PARP抑制剂的存在下,PARP1在DNA断裂处被捕获,这些抑制剂细胞毒性的潜在机制。因此,任何影响捕获的细胞过程都被认为会影响PARP抑制剂的效率,这些药物治疗的患者可能导致获得性耐药。DNA损伤后有许多ADP核糖基化靶标,包括PARP1本身以及组蛋白。虽然最近的研究发现,PARP1的自动修饰促进了它从DNA损伤中的释放,其他ADP-核糖基化蛋白对该过程的潜在影响尚不清楚.这里,我们证明组蛋白ADP-核糖基化对于PARP1从病变中及时消散也至关重要,从而导致细胞对PARP抑制剂的耐药性。考虑到ADP-核糖基化和其他组蛋白标记之间的串扰,我们的发现为开发更有效的PARP抑制剂驱动的癌症治疗打开了有趣的观点.
    Poly(ADP-ribose) polymerase 1 (PARP1) has emerged as a central target for cancer therapies due to the ability of PARP inhibitors to specifically kill tumors deficient for DNA repair by homologous recombination. Upon DNA damage, PARP1 quickly binds to DNA breaks and triggers ADP-ribosylation signaling. ADP-ribosylation is important for the recruitment of various factors to sites of damage, as well as for the timely dissociation of PARP1 from DNA breaks. Indeed, PARP1 becomes trapped at DNA breaks in the presence of PARP inhibitors, a mechanism underlying the cytotoxitiy of these inhibitors. Therefore, any cellular process influencing trapping is thought to impact PARP inhibitor efficiency, potentially leading to acquired resistance in patients treated with these drugs. There are numerous ADP-ribosylation targets after DNA damage, including PARP1 itself as well as histones. While recent findings reported that the automodification of PARP1 promotes its release from the DNA lesions, the potential impact of other ADP-ribosylated proteins on this process remains unknown. Here, we demonstrate that histone ADP-ribosylation is also crucial for the timely dissipation of PARP1 from the lesions, thus contributing to cellular resistance to PARP inhibitors. Considering the crosstalk between ADP-ribosylation and other histone marks, our findings open interesting perspectives for the development of more efficient PARP inhibitor-driven cancer therapies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    PARP催化的ADP核糖基化(ADPr)在调节各种细胞途径中很重要。直到最近,PARP依赖性单-ADP-核糖基化由于缺乏灵敏的检测方法而知之甚少。这里,我们利用改进的抗体来检测单ADP核糖基化。我们观察了内源性干扰素(IFN)诱导的ADP-核糖基化,并表明PARP14是负责这种修饰的主要酶。恰到好处,这种信号被SARS-CoV-2(Mac1)的宏域逆转,提供Mac1抵消抗病毒PARP活性的可能机制。我们的数据还阐明了PARP9及其结合伴侣的主要作用,E3泛素连接酶DTX3L,通过蛋白质-蛋白质相互作用和PARP9巨域1的水解活性调节PARP14活性。最后,我们还介绍了IFN应答中ADPr依赖性泛素化的首次可视化。这些方法应进一步促进我们对IFN诱导的ADPr和泛素信号传导过程的理解,并可能阐明不同病原体如何避免此类防御途径。
    PARP-catalysed ADP-ribosylation (ADPr) is important in regulating various cellular pathways. Until recently, PARP-dependent mono-ADP-ribosylation has been poorly understood due to the lack of sensitive detection methods. Here, we utilised an improved antibody to detect mono-ADP-ribosylation. We visualised endogenous interferon (IFN)-induced ADP-ribosylation and show that PARP14 is a major enzyme responsible for this modification. Fittingly, this signalling is reversed by the macrodomain from SARS-CoV-2 (Mac1), providing a possible mechanism by which Mac1 counteracts the activity of antiviral PARPs. Our data also elucidate a major role of PARP9 and its binding partner, the E3 ubiquitin ligase DTX3L, in regulating PARP14 activity through protein-protein interactions and by the hydrolytic activity of PARP9 macrodomain 1. Finally, we also present the first visualisation of ADPr-dependent ubiquitylation in the IFN response. These approaches should further advance our understanding of IFN-induced ADPr and ubiquitin signalling processes and could shed light on how different pathogens avoid such defence pathways.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    蛋白质ADP-核糖基化在抗病毒信号级联如干扰素应答中起着重要但不明确的作用。几种临床感兴趣的病毒,包括冠状病毒,表达由宿主酶催化的逆转ADP核糖基化的水解酶,提示这种修饰在宿主-病原体相互作用中的重要作用。然而,其中ADP-核糖基转移酶介导宿主ADP-核糖基化,它们靶向的蛋白质和途径以及这些修饰如何影响病毒感染和发病机制目前尚不清楚。在这里,我们表明由IFNγ信号诱导的宿主ADP-核糖基转移酶活性取决于PARP14催化活性,并且PARP9/DTX3L复合物需要通过翻译后机制维持PARP14蛋白水平。PARP9/DTX3L复合物和PARP14均位于IFNγ诱导的含有ADP核糖基化蛋白的细胞质包涵体,PARP14本身和DTX3L都可能是PARP14ADP核糖基化的靶标。我们提供的证据表明,这些修饰被SARS-CoV-2Nsp3宏域水解,揭示了IFN诱导的ADP-核糖基转移酶之间复杂的交叉调节以及冠状病毒宏观结构域在抵消其活性中的潜在作用。
    Protein ADP-ribosylation plays important but ill-defined roles in antiviral signalling cascades such as the interferon response. Several viruses of clinical interest, including coronaviruses, express hydrolases that reverse ADP-ribosylation catalysed by host enzymes, suggesting an important role for this modification in host-pathogen interactions. However, which ADP-ribosyltransferases mediate host ADP-ribosylation, what proteins and pathways they target and how these modifications affect viral infection and pathogenesis is currently unclear. Here we show that host ADP-ribosyltransferase activity induced by IFNγ signalling depends on PARP14 catalytic activity and that the PARP9/DTX3L complex is required to uphold PARP14 protein levels via post-translational mechanisms. Both the PARP9/DTX3L complex and PARP14 localise to IFNγ-induced cytoplasmic inclusions containing ADP-ribosylated proteins, and both PARP14 itself and DTX3L are likely targets of PARP14 ADP-ribosylation. We provide evidence that these modifications are hydrolysed by the SARS-CoV-2 Nsp3 macrodomain, shedding light on the intricate cross-regulation between IFN-induced ADP-ribosyltransferases and the potential roles of the coronavirus macrodomain in counteracting their activity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    最近的发现确立了DNA和RNA作为ADP-核糖基化的真正底物。NADAR(“NAD-和ADP-核糖”相关)酶逆转鸟嘌呤ADP-核糖基化并在DarT-NADAR操纵子中充当抗毒素。尽管NADAR在原核生物中普遍存在,真核生物,和病毒,它们的特异性和更广泛的生理作用仍然知之甚少。利用系统发育和生化分析,我们进一步探讨了NADAR结构域的去ADP核糖基化活性和抗毒素功能。我们证明了来自代表性大肠杆菌菌株和大肠杆菌感染噬菌体的NADAR蛋白的不同亚家族保留了生化活性,同时在提供保护免受细胞中毒性鸟嘌呤ADP-核糖基化方面表现出特异性。此外,我们确定了YbiA亚家族中的一种粘细菌酶,该酶可作为其相关的DarT无关ART毒素的抗毒素,我们称之为YarT,因此提供了迄今为止未表征的ART-YbiA毒素-抗毒素对。我们的研究有助于DNAADP核糖基化的新兴领域,支持其在细菌毒素-抗毒素系统内外的生理相关性。值得注意的是,NADARs的特异性和对非哺乳动物的限制推断它们可能作为抗微生物药物的高度特异性靶标而具有最小的脱靶效应.
    Recent discoveries establish DNA and RNA as bona fide substrates for ADP-ribosylation. NADAR (\"NAD- and ADP-ribose\"-associated) enzymes reverse guanine ADP-ribosylation and serve as antitoxins in the DarT-NADAR operon. Although NADARs are widespread across prokaryotes, eukaryotes, and viruses, their specificity and broader physiological roles remain poorly understood. Using phylogenetic and biochemical analyses, we further explore de-ADP-ribosylation activity and antitoxin functions of NADAR domains. We demonstrate that different subfamilies of NADAR proteins from representative E. coli strains and an E. coli-infecting phage retain biochemical activity while displaying specificity in providing protection from toxic guanine ADP-ribosylation in cells. Furthermore, we identify a myxobacterial enzyme within the YbiA subfamily that functions as an antitoxin for its associated DarT-unrelated ART toxin, which we termed YarT, thus presenting a hitherto uncharacterised ART-YbiA toxin-antitoxin pair. Our studies contribute to the burgeoning field of DNA ADP-ribosylation, supporting its physiological relevance within and beyond bacterial toxin-antitoxin systems. Notably, the specificity and confinement of NADARs to non-mammals infer their potential as highly specific targets for antimicrobial drugs with minimal off-target effects.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    酯连接的翻译后修饰,包括丝氨酸和苏氨酸泛素化,已被公认为重要的细胞信号。然而,由于酯键的化学不稳定性,它们的检测仍然是一个重大挑战。即使对于长期已知的修改,情况也是如此,如天冬氨酸和谷氨酸的ADP核糖基化,其在PARP1信号传导中的作用最近受到质疑。这里,我们提出了易于实现的保留酯连接修饰的方法。当与特异性和灵敏的模块化抗体和质谱联用时,这些方法揭示了DNA损伤诱导的天冬氨酸/谷氨酸单-ADP-核糖基化。这个先前难以捉摸的信号代表PARP1信号的初始波,与丝氨酸单ADP核糖基化的更持久的性质形成对比。出乎意料的是,我们表明,聚ADP-核糖水解酶PARG能够逆转细胞中酯连接的单ADP核糖基化。我们的方法能够对各种ADP-核糖基化作者进行广泛的调查,如这里所示的非规范泛素化,它为探索其他新兴的酯连接修饰铺平了道路。
    Ester-linked post-translational modifications, including serine and threonine ubiquitination, have gained recognition as important cellular signals. However, their detection remains a significant challenge due to the chemical lability of the ester bond. This is the case even for long-known modifications, such as ADP-ribosylation on aspartate and glutamate, whose role in PARP1 signaling has recently been questioned. Here, we present easily implementable methods for preserving ester-linked modifications. When combined with a specific and sensitive modular antibody and mass spectrometry, these approaches reveal DNA damage-induced aspartate/glutamate mono-ADP-ribosylation. This previously elusive signal represents an initial wave of PARP1 signaling, contrasting with the more enduring nature of serine mono-ADP-ribosylation. Unexpectedly, we show that the poly-ADP-ribose hydrolase PARG is capable of reversing ester-linked mono-ADP-ribosylation in cells. Our methodology enables broad investigations of various ADP-ribosylation writers and, as illustrated here for noncanonical ubiquitination, it paves the way for exploring other emerging ester-linked modifications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    聚(ADP-核糖)聚合酶(PARP)是调节细胞活动的关键,例如对DNA损伤和细胞死亡的反应。PARP催化单-或聚(ADP-核糖基)形式的可逆翻译后修饰(PTM)。已知这种类型的修饰形成泛素-ADP-核糖(Ub-ADPR)缀合物,该缀合物取决于E3泛素连接酶(DTX)的Deltex家族的作用。特别是,DTX将泛素添加到ADP-核糖中腺苷核糖的3'-OH中,有效地隔离泛素并阻止泛素依赖性信号传导。先前的工作证明了DTX对无蛋白ADPR泛素化的功能,单-ADP-核糖基化肽,和ADP-核糖基化核酸。然而,DTX介导的聚(ADP-核糖基)泛素化的动力学仍有待定义。在这里,我们表明ADPR泛素化功能在其他PAR结合E3连接酶中未发现,并且在DTX家族成员中保守。重要的是,DTX特异性靶向聚(ADP-核糖)链用于泛素化,可被PARG裂解,聚(ADP-核糖)的初级橡皮擦,留下与泛素缀合的腺苷末端ADPR单元。我们的集体结果证明了多(ADP-核糖基)腺苷末端的DTX特异性泛素化,并表明独特的Ub-ADPR缀合过程是PARP-DTX控制细胞活性的基础。
    Poly(ADP-ribose) polymerases (PARPs) are critical to regulating cellular activities, such as the response to DNA damage and cell death. PARPs catalyze a reversible post-translational modification (PTM) in the form of mono- or poly(ADP-ribosyl)ation. This type of modification is known to form a ubiquitin-ADP-ribose (Ub-ADPR) conjugate that depends on the actions of Deltex family of E3 ubiquitin ligases (DTXs). In particular, DTXs add ubiquitin to the 3\'-OH of adenosine ribose\' in ADP-ribose, which effectively sequesters ubiquitin and impedes ubiquitin-dependent signaling. Previous work demonstrates DTX function for ubiquitination of protein-free ADPR, mono-ADP-ribosylated peptides, and ADP-ribosylated nucleic acids. However, the dynamics of DTX-mediated ubiquitination of poly(ADP-ribosyl)ation remains to be defined. Here we show that the ADPR ubiquitination function is not found in other PAR-binding E3 ligases and is conserved across DTX family members. Importantly, DTXs specifically target poly(ADP-ribose) chains for ubiquitination that can be cleaved by PARG, the primary eraser of poly(ADP-ribose), leaving the adenosine-terminal ADPR unit conjugated to ubiquitin. Our collective results demonstrate the DTXs\' specific ubiquitination of the adenosine terminus of poly(ADP-ribosyl)ation and suggest the unique Ub-ADPR conjugation process as a basis for PARP-DTX control of cellular activities.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号