ADP-ribosylation

ADP - 核糖基化
  • 文章类型: Journal Article
    在六十年代发现了用聚(ADP-核糖)对蛋白质的翻译后修饰。从那以后,我们已经了解到所涉及的酶,所谓的聚(ADP-核糖基)聚合酶(PARP),是使用辅因子NAD+将ADP-核糖转移至其靶标的转移酶。很少有PARP能够产生聚(ADP-核糖),而大多数转移一个ADP-核糖。在过去的十年里,发现了逆转单(ADP-核糖基)的水解酶,开发了检测方法,并定义了新的底物,包括核酸。尽管继续努力,对大多数PARP的生物学功能仍然知之甚少。在这次审查中,我们总结了ADP核糖基化的关键功能,并介绍了新的见解。
    The posttranslational modification of proteins with poly(ADP-ribose) was discovered in the sixties. Since then, we have learned that the enzymes involved, the so-called poly(ADP-ribosyl)polymerases (PARPs), are transferases which use cofactor NAD+ to transfer ADP-ribose to their targets. Few PARPs are able to create poly(ADP-ribose), whereas the majority transfers a single ADP-ribose. In the last decade, hydrolases were discovered which reverse mono(ADP-ribosyl)ation, detection methods were developed and new substrates were defined, including nucleic acids. Despite the continued effort, relatively little is still known about the biological function of most PARPs. In this review, we summarise key functions of ADP-ribosylation and introduce emerging insights.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    ADP-核糖基化是蛋白质和其他靶标的普遍存在的修饰,如核酸,调节所有生命王国的各种细胞功能。此外,这些ADP-核糖基转移酶(ARTs)修饰各种底物和原子。自发现ADP-核糖基化至今已有近60年。已经用辅因子(NAD+或NAD+类似物)揭示了各种ART结构。然而,我们仍然不知道ART的分子机制。需要更好地理解ART如何指定目标氨基酸或碱基。为此,需要更多关于ART的三方复杂结构的信息,辅因子,和基材。三方复合物对于理解ADP-核糖基转移酶的机制至关重要。本文综述了基于ART三方复合物结构的ADP核糖基化的一般机制。
    ADP-ribosylation is a ubiquitous modification of proteins and other targets, such as nucleic acids, that regulates various cellular functions in all kingdoms of life. Furthermore, these ADP-ribosyltransferases (ARTs) modify a variety of substrates and atoms. It has been almost 60 years since ADP-ribosylation was discovered. Various ART structures have been revealed with cofactors (NAD+ or NAD+ analog). However, we still do not know the molecular mechanisms of ART. It needs to be better understood how ART specifies the target amino acids or bases. For this purpose, more information is needed about the tripartite complex structures of ART, the cofactors, and the substrates. The tripartite complex is essential to understand the mechanism of ADP-ribosyltransferase. This review updates the general ADP-ribosylation mechanism based on ART tripartite complex structures.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    三阴性乳腺癌(TNBC),占所有乳腺癌的10-20%,是侵略性的,具有很高的转移潜力,由于治疗选择有限,预后不良。LT-IIc,与一组独特的细胞表面神经节苷脂受体结合的ADP-核糖基化热不稳定肠毒素的II型亚家族成员对TNBC细胞系具有细胞毒性,但对未转化的乳腺上皮细胞没有细胞毒活性。这里,原代TNBC细胞,从切除的人类肿瘤中分离出来,表现出特异性针对LT-IIc的增强的细胞毒性反应,与测试的其他肠毒素相反。MDA-MB-231细胞,TNBC的模型,用于评估LT-IIc细胞毒性的潜在机制,诱导细胞内cAMP升高并刺激cAMP反应元件结合蛋白(CREB)信号通路。为了剖析ADP-核糖基化的作用,cAMP诱导,和细胞毒性反应中的神经节苷脂连接,MDA-MB-231细胞暴露于野生型LT-IIc,缺乏ADP-核糖基化A多肽的LT-IIc的重组B-五聚体,或具有酶灭活的A1结构域的LT-IIc突变体。这些实验表明,LT-IIc的ADP-核糖基转移酶活性对于诱导MDA-MB-231细胞的致死性是非必需的。相比之下,神经节苷脂结合活性改变的突变LT-IIc未能在MDA-MB-231细胞中触发细胞毒性反应。此外,神经节苷脂表达的药理学抑制保护MDA-MB-231细胞免受LT-IIc的细胞毒性作用。这些数据证明神经节苷脂结扎,但不诱导cAMP产生或ADP-核糖基转移酶活性,是启动MDA-MB-231细胞的LT-IIc依赖性细胞死亡所必需的。这些实验揭示了LT-IIc和神经节苷脂在信号转导中先前未知的特性,提供了靶向治疗TNBC的潜力,一个迫切需要的选择。
    Triple-negative breast cancer (TNBC), which constitutes 10-20 percent of all breast cancers, is aggressive, has high metastatic potential, and carries a poor prognosis due to limited treatment options. LT-IIc, a member of the type II subfamily of ADP-ribosylating-heat-labile enterotoxins that bind to a distinctive set of cell-surface ganglioside receptors-is cytotoxic toward TNBC cell lines, but has no cytotoxic activity for non-transformed breast epithelial cells. Here, primary TNBC cells, isolated from resected human tumors, showed an enhanced cytotoxic response specifically toward LT-IIc, in contrast to other enterotoxins that were tested. MDA-MB-231 cells, a model for TNBC, were used to evaluate potential mechanisms of cytotoxicity by LT-IIc, which induced elevated intracellular cAMP and stimulated the cAMP response element-binding protein (CREB) signaling pathway. To dissect the role of ADP-ribosylation, cAMP induction, and ganglioside ligation in the cytotoxic response, MDA-MB-231 cells were exposed to wild-type LT-IIc, the recombinant B-pentamer of LT-IIc that lacks the ADP-ribosylating A polypeptide, or mutants of LT-IIc with an enzymatically inactivated A1-domain. These experiments revealed that the ADP-ribosyltransferase activity of LT-IIc was nonessential for inducing the lethality of MDA-MB-231 cells. In contrast, a mutant LT-IIc with an altered ganglioside binding activity failed to trigger a cytotoxic response in MDA-MB-231 cells. Furthermore, the pharmacological inhibition of ganglioside expression protected MDA-MB-231 cells from the cytotoxic effects of LT-IIc. These data establish that ganglioside ligation, but not the induction of cAMP production nor ADP-ribosyltransferase activity, is essential to initiating the LT-IIc-dependent cell death of MDA-MB-231 cells. These experiments unveiled previously unknown properties of LT-IIc and gangliosides in signal transduction, offering the potential for the targeted treatment of TNBC, an option that is desperately needed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    谷氨酰-氨甲酰-tRNA合成酶(EPRS1)是一种双功能氨酰基-tRNA合成酶(aaRS),对于解码遗传密码至关重要。EPRS1驻留,与其他七个aaRS和三个非催化蛋白,在细胞质多tRNA合成酶复合物(MSC)中。多个MSC驻留aaRS,包括EPRS1,表现出从MSC的刺激依赖性释放,以执行与其在蛋白质合成中的主要功能不同的非规范活动。这里,我们显示EPRS1存在于组成型低磷酸酶和张力蛋白同源物(PTEN)表达的乳腺癌细胞的细胞质和细胞核中。EPRS1主要是表达PTEN的细胞,但是对PTEN的化学或遗传抑制作用,或其靶标的化学或应激介导的激活,AKT,诱导EPRS1核定位。同样,在浸润性导管癌中观察到EPRS1的优先核定位,也是P-Ser473-AKT。EPRS1核转运需要连接催化谷氨酰-tRNA合成酶和脯氨酸酰-tRNA合成酶结构域的接头区域内的核定位信号(NLS)。核EPRS1与聚(ADP-核糖)聚合酶1(PARP1)相互作用,一种DNA损伤传感器,可指导蛋白质的聚(ADP-核糖基)化(PARylation)。EPRS1是PARP1活性的关键调节因子,如EPRS1敲低细胞中ADP-核糖基化显著降低所示。此外,EPRS1和PARP1敲低可比较地改变多个肿瘤相关基因的表达,抑制DNA损伤修复,降低肿瘤细胞存活率,并减少乳腺癌细胞形成的肿瘤球。EPRS1介导的PARP1活性调节提供了乳腺癌细胞中PTEN缺失之间的机制联系,PARP1激活,细胞存活和肿瘤生长。靶向EPRS1的非规范活性,而不抑制规范的tRNA连接酶活性,提供了一种潜在补充现有PARP1抑制剂的治疗方法。
    Glutamyl-prolyl-tRNA synthetase (EPRS1) is a bifunctional aminoacyl-tRNA-synthetase (aaRS) essential for decoding the genetic code. EPRS1 resides, with seven other aaRSs and three noncatalytic proteins, in the cytoplasmic multi-tRNA synthetase complex (MSC). Multiple MSC-resident aaRSs, including EPRS1, exhibit stimulus-dependent release from the MSC to perform noncanonical activities distinct from their primary function in protein synthesis. Here, we show EPRS1 is present in both cytoplasm and nucleus of breast cancer cells with constitutively low phosphatase and tensin homolog (PTEN) expression. EPRS1 is primarily cytosolic in PTEN-expressing cells, but chemical or genetic inhibition of PTEN, or chemical or stress-mediated activation of its target, AKT, induces EPRS1 nuclear localization. Likewise, preferential nuclear localization of EPRS1 was observed in invasive ductal carcinoma that were also P-Ser473-AKT+. EPRS1 nuclear transport requires a nuclear localization signal (NLS) within the linker region that joins the catalytic glutamyl-tRNA synthetase and prolyl-tRNA synthetase domains. Nuclear EPRS1 interacts with poly(ADP-ribose) polymerase 1 (PARP1), a DNA-damage sensor that directs poly(ADP-ribosyl)ation (PARylation) of proteins. EPRS1 is a critical regulator of PARP1 activity as shown by markedly reduced ADP-ribosylation in EPRS1 knockdown cells. Moreover, EPRS1 and PARP1 knockdown comparably alter the expression of multiple tumor-related genes, inhibit DNA-damage repair, reduce tumor cell survival, and diminish tumor sphere formation by breast cancer cells. EPRS1-mediated regulation of PARP1 activity provides a mechanistic link between PTEN loss in breast cancer cells, PARP1 activation, and cell survival and tumor growth. Targeting the noncanonical activity of EPRS1, without inhibiting canonical tRNA ligase activity, provides a therapeutic approach potentially supplementing existing PARP1 inhibitors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    胞内细菌病原体嗜肺军团菌通过分泌具有多种生化活性的多种效应物调节宿主细胞功能。特别是,SidE家族的效应子在涉及磷酸核糖泛素(PR-Ub)产生的过程中干扰宿主蛋白的泛素化。这里,我们显示效应LnaB将PR-Ub转化为ADP-核糖基化泛素,通过(ADP-核糖基)水解酶MavL进一步加工为ADP-核糖和功能性泛素,从而维持感染细胞中的泛素稳态。在被肌动蛋白激活后,LnaB还在酪氨酸残基上经历自AMPylation。LnaB的活性需要一个由Ser组成的主题,His和Glu(SHxxxE)存在于来自多种细菌病原体的一大类毒素中。因此,我们的研究揭示了病原体维持泛素稳态的机制,并鉴定了能够进行蛋白质AMPylation的酶家族.
    The intracellular bacterial pathogen Legionella pneumophila modulates host cell functions by secreting multiple effectors with diverse biochemical activities. In particular, effectors of the SidE family interfere with host protein ubiquitination in a process that involves production of phosphoribosyl ubiquitin (PR-Ub). Here, we show that effector LnaB converts PR-Ub into ADP-ribosylated ubiquitin, which is further processed to ADP-ribose and functional ubiquitin by the (ADP-ribosyl)hydrolase MavL, thus maintaining ubiquitin homeostasis in infected cells. Upon being activated by actin, LnaB also undergoes self-AMPylation on tyrosine residues. The activity of LnaB requires a motif consisting of Ser, His and Glu (SHxxxE) present in a large family of toxins from diverse bacterial pathogens. Thus, our study sheds light on the mechanisms by which a pathogen maintains ubiquitin homeostasis and identifies a family of enzymes capable of protein AMPylation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    生物体内的代谢受各种过程的调节,包括翻译后修饰(PTM)。这些类型的化学修饰改变了分子,生物化学,和蛋白质的细胞特性,并允许生物体对不同的环境做出快速反应,能量状态,和压力。苹果酸脱氢酶(MDH)是一种代谢酶,在生命的所有领域都是保守的,并且在翻译后被广泛修饰。由于MDH的核心作用,它的修饰可以改变代谢通量,包括克雷布斯周期,糖酵解,和脂质和氨基酸代谢。尽管MDH及其广泛的翻译后修改景观的重要性,MDHPTM的综合表征,以及它们对MDH结构的影响,函数,代谢通量仍未充分开发。这里,我们回顾了三种类型的MDHPTM-乙酰化,ADP-核糖基化,和甲基化-并探索文献中已知的内容以及这些PTM如何潜在影响3D结构,酶活性,和MDH的相互作用。最后,我们简要讨论了PTM在包括MDH在内的代谢物动力学中的潜在参与。
    Metabolism within an organism is regulated by various processes, including post-translational modifications (PTMs). These types of chemical modifications alter the molecular, biochemical, and cellular properties of proteins and allow the organism to respond quickly to different environments, energy states, and stresses. Malate dehydrogenase (MDH) is a metabolic enzyme that is conserved in all domains of life and is extensively modified post-translationally. Due to the central role of MDH, its modification can alter metabolic flux, including the Krebs cycle, glycolysis, and lipid and amino acid metabolism. Despite the importance of both MDH and its extensively post-translationally modified landscape, comprehensive characterization of MDH PTMs, and their effects on MDH structure, function, and metabolic flux remains underexplored. Here, we review three types of MDH PTMs - acetylation, ADP-ribosylation, and methylation - and explore what is known in the literature and how these PTMs potentially affect the 3D structure, enzymatic activity, and interactome of MDH. Finally, we briefly discuss the potential involvement of PTMs in the dynamics of metabolons that include MDH.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    DNA双链断裂(DSB)引发对信号损伤的精心反应,并通过两个主要途径触发修复:非同源末端连接(NHEJ),它在整个相间都起作用,和同源重组(HR),仅限于S/G2阶段。DNA损伤反应(DDR)依赖于,关于核因子的翻译后修饰,以协调断裂的修补。组蛋白和染色质相关因子的泛素化调节DSB修复,许多E3泛素连接酶参与此过程。尽管取得了重大进展,我们对泛素介导的DDR调节的理解仍然不完整.这里,我们进行了定位筛选,以鉴定参与基因组维持的RING/U-boxE3连接酶.我们的方法发现了7种被招募到微辐照条纹的新型E3连接酶,提示在DNA损伤信号和修复中的潜在作用。在这些因素中,DELTEX家族E3连接酶DTX2以聚ADP-核糖基化依赖性方式迅速转移至病变。DTX2通过其WWE和DTC域被招募和保留在DSB。在细胞中,这两个结构域都是与单和聚ADP核糖基化蛋白的最佳结合所必需的,WWE在此过程中起着重要作用。支持其参与DSB修复,DTX2耗竭降低HR效率并适度增强NHEJ。此外,DTX2耗尽阻碍了BRCA1病灶的形成,并增加了DSB的53BP1积累,提示这种E3连接酶在修复途径选择中的微调作用。最后,DTX2耗竭使癌细胞对X射线和PARP抑制敏感,而DTX2的再表达可以挽救这些敏感性。总之,我们的工作确定DTX2是HR介导的DSB修复的新型ADP-核糖基化依赖性调节因子.
    DNA double-strand breaks (DSBs) elicit an elaborate response to signal damage and trigger repair via two major pathways: nonhomologous end-joining (NHEJ), which functions throughout the interphase, and homologous recombination (HR), restricted to S/G2 phases. The DNA damage response relies, on post-translational modifications of nuclear factors to coordinate the mending of breaks. Ubiquitylation of histones and chromatin-associated factors regulates DSB repair and numerous E3 ubiquitin ligases are involved in this process. Despite significant progress, our understanding of ubiquitin-mediated DNA damage response regulation remains incomplete. Here, we have performed a localization screen to identify RING/U-box E3 ligases involved in genome maintenance. Our approach uncovered 7 novel E3 ligases that are recruited to microirradiation stripes, suggesting potential roles in DNA damage signaling and repair. Among these factors, the DELTEX family E3 ligase DTX2 is rapidly mobilized to lesions in a poly ADP-ribosylation-dependent manner. DTX2 is recruited and retained at DSBs via its WWE and DELTEX conserved C-terminal domains. In cells, both domains are required for optimal binding to mono and poly ADP-ribosylated proteins with WWEs playing a prominent role in this process. Supporting its involvement in DSB repair, DTX2 depletion decreases HR efficiency and moderately enhances NHEJ. Furthermore, DTX2 depletion impeded BRCA1 foci formation and increased 53BP1 accumulation at DSBs, suggesting a fine-tuning role for this E3 ligase in repair pathway choice. Finally, DTX2 depletion sensitized cancer cells to X-rays and PARP inhibition and these susceptibilities could be rescued by DTX2 reexpression. Altogether, our work identifies DTX2 as a novel ADP-ribosylation-dependent regulator of HR-mediated DSB repair.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    ADP核糖基化(ADPr)信号在DNA损伤反应中起着至关重要的作用。针对DNA损伤后催化ADPr的主要酶的抑制剂,聚(ADP-核糖)聚合酶1(PARP1),用于治疗携带BRCA1/2突变的乳腺癌患者。然而,对PARP抑制剂(PARPi)的耐药性是治疗患者的主要障碍。为了了解ADPr在PARPi敏感性中的作用,我们使用液相色谱-串联质谱(LC-MS/MS)分析了六种表现出不同PARPi敏感性的乳腺癌细胞系中的ADPr。我们在所有细胞系的777个蛋白质上鉴定了1,632个位点,主要是在丝氨酸残基上,所有细胞系中DNA损伤相关蛋白的靶向残基存在位点特异性重叠,证明DNA损伤后丝氨酸ADPr信号网络的高度保守性。此外,我们观察到PARPi敏感BRCA突变体中ADPr强度的位点特异性差异和PARPi抗性BRCA突变体HCC1937细胞中独特的ADPr位点,其具有低的聚(ADP-核糖)糖水解酶(PARG)水平和PARP1上更长的ADPr链。
    ADP-ribosylation (ADPr) signaling plays a crucial role in DNA damage response. Inhibitors against the main enzyme catalyzing ADPr after DNA damage, poly(ADP-ribose) polymerase 1 (PARP1), are used to treat patients with breast cancer harboring BRCA1/2 mutations. However, resistance to PARP inhibitors (PARPi) is a major obstacle in treating patients. To understand the role of ADPr in PARPi sensitivity, we use liquid chromatography-tandem mass spectrometry (LC-MS/MS) to analyze ADPr in six breast cancer cell lines exhibiting different PARPi sensitivities. We identify 1,632 sites on 777 proteins across all cell lines, primarily on serine residues, with site-specific overlap of targeted residues across DNA-damage-related proteins across all cell lines, demonstrating high conservation of serine ADPr-signaling networks upon DNA damage. Furthermore, we observe site-specific differences in ADPr intensities in PARPi-sensitive BRCA mutants and unique ADPr sites in PARPi-resistant BRCA-mutant HCC1937 cells, which have low poly(ADP-ribose) glycohydrolase (PARG) levels and longer ADPr chains on PARP1.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细胞和分子对DNA损伤的反应是高度协调和动态的,保护基因组的维持和完整性。组蛋白结合DNA并将基因组组织成染色质。已显示组蛋白的翻译后修饰通过调节DNA损伤应答途径在协调染色质对DNA损伤的应答中起重要作用。在促成这个复杂网络的组蛋白修饰中,组蛋白ADP-核糖基化(ADPr)正在成为基于染色质的DNA损伤反应(DDR)途径的关键组成部分。在这次审查中,我们调查了如何调节组蛋白ADPr以促进DDR,以及它如何影响染色质和其他组蛋白标记。最近的进展揭示了组蛋白ADPr对染色质结构的影响以及对DNA损伤的DNA修复因子募集的调节。此外,我们重点介绍了技术的进步,这些进步使得能够在细胞中以及对DNA损伤的应答中鉴定和功能验证组蛋白ADPr.鉴于DNA损伤和表观遗传调控参与人类疾病包括癌症,这些发现对组蛋白ADPr有临床意义,也在讨论中。总的来说,本综述涵盖了组蛋白ADPr在DDR中的参与,并强调了旨在确定参与DDR的组蛋白ADPr控制的机制的潜在未来研究,人类疾病,和他们的治疗。
    Cellular and molecular responses to DNA damage are highly orchestrated and dynamic, acting to preserve the maintenance and integrity of the genome. Histone proteins bind DNA and organize the genome into chromatin. Post-translational modifications of histones have been shown to play an essential role in orchestrating the chromatin response to DNA damage by regulating the DNA damage response pathway. Among the histone modifications that contribute to this intricate network, histone ADP-ribosylation (ADPr) is emerging as a pivotal component of chromatin-based DNA damage response (DDR) pathways. In this review, we survey how histone ADPr is regulated to promote the DDR and how it impacts chromatin and other histone marks. Recent advancements have revealed histone ADPr effects on chromatin structure and the regulation of DNA repair factor recruitment to DNA lesions. Additionally, we highlight advancements in technology that have enabled the identification and functional validation of histone ADPr in cells and in response to DNA damage. Given the involvement of DNA damage and epigenetic regulation in human diseases including cancer, these findings have clinical implications for histone ADPr, which are also discussed. Overall, this review covers the involvement of histone ADPr in the DDR and highlights potential future investigations aimed at identifying mechanisms governed by histone ADPr that participate in the DDR, human diseases, and their treatments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    聚(ADP-核糖)聚合酶1(PARP1)由于PARP抑制剂通过同源重组特异性杀死DNA修复缺陷的肿瘤的能力而成为癌症治疗的中心靶标。DNA损伤后,PARP1快速结合DNA断裂并触发ADP-核糖基化信号传导。ADP-核糖基化对于将各种因素募集到损伤位点是重要的,以及PARP1与DNA断裂的及时解离。的确,在PARP抑制剂的存在下,PARP1在DNA断裂处被捕获,这些抑制剂细胞毒性的潜在机制。因此,任何影响捕获的细胞过程都被认为会影响PARP抑制剂的效率,这些药物治疗的患者可能导致获得性耐药。DNA损伤后有许多ADP核糖基化靶标,包括PARP1本身以及组蛋白。虽然最近的研究发现,PARP1的自动修饰促进了它从DNA损伤中的释放,其他ADP-核糖基化蛋白对该过程的潜在影响尚不清楚.这里,我们证明组蛋白ADP-核糖基化对于PARP1从病变中及时消散也至关重要,从而导致细胞对PARP抑制剂的耐药性。考虑到ADP-核糖基化和其他组蛋白标记之间的串扰,我们的发现为开发更有效的PARP抑制剂驱动的癌症治疗打开了有趣的观点.
    Poly(ADP-ribose) polymerase 1 (PARP1) has emerged as a central target for cancer therapies due to the ability of PARP inhibitors to specifically kill tumors deficient for DNA repair by homologous recombination. Upon DNA damage, PARP1 quickly binds to DNA breaks and triggers ADP-ribosylation signaling. ADP-ribosylation is important for the recruitment of various factors to sites of damage, as well as for the timely dissociation of PARP1 from DNA breaks. Indeed, PARP1 becomes trapped at DNA breaks in the presence of PARP inhibitors, a mechanism underlying the cytotoxitiy of these inhibitors. Therefore, any cellular process influencing trapping is thought to impact PARP inhibitor efficiency, potentially leading to acquired resistance in patients treated with these drugs. There are numerous ADP-ribosylation targets after DNA damage, including PARP1 itself as well as histones. While recent findings reported that the automodification of PARP1 promotes its release from the DNA lesions, the potential impact of other ADP-ribosylated proteins on this process remains unknown. Here, we demonstrate that histone ADP-ribosylation is also crucial for the timely dissipation of PARP1 from the lesions, thus contributing to cellular resistance to PARP inhibitors. Considering the crosstalk between ADP-ribosylation and other histone marks, our findings open interesting perspectives for the development of more efficient PARP inhibitor-driven cancer therapies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号