Sodium Channels

钠通道
  • 文章类型: Case Reports
    Brugada综合征是一种罕见的心脏病,其特征是独特的心电图模式。易患致命心律失常的个体。虽然主要与SCN5A基因的功能缺失突变有关,该综合征的获得性形式与各种因素有关,包括吸毒。我们介绍了一例31岁的女性,该女性在使用可卡因后无反应地到急诊科就诊,并在V1-V3中出现不完整的右束支传导阻滞,ST抬高并伴有双相波,和弥漫性复极化异常与J点偏差,而在重症监护病房。这项研究旨在讨论管理药物诱导的Brugada样发现的复杂性,并强调需要进一步研究可卡因诱导的心脏效应的机制。我们旨在讨论可卡因作为钠通道阻滞剂的作用及其在Brugada综合征中对连接蛋白43的潜在影响的潜在机制。这项研究还加强了区分真正的Brugada综合征和其他类似ECG变化对于适当护理管理的重要性。
    Brugada syndrome is a rare cardiac condition characterized by distinctive electrocardiogram patterns, predisposing individuals to fatal arrhythmias. While primarily linked to a loss-of-function mutation in the SCN5A gene, acquired forms of the syndrome have been associated with various factors, including drug use. We present a case of a 31-year-old female who presented to the emergency department unresponsive following cocaine use and developed type 1 Brugada ECG patterns alongside an incomplete right bundle branch block in V1-V3, ST elevations with biphasic waves, and diffuse repolarization abnormalities with J point deviations while in the intensive care unit. This study aimed to discuss the complexity of managing drug-induced Brugada-like findings and highlights the need for further research into the mechanisms underlying cocaine-induced cardiac effects. We aimed to discuss potential mechanisms for the impact of cocaine as its role as a sodium channel blocker and its potential effects on connexin 43 in the context of Brugada syndrome. This study also reinforced the importance of differentiating between true Brugada syndrome and other similar ECG changes for appropriate care management.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    心房颤动(AF)是医学实践中最常见的心律失常之一。糖尿病是房颤的独立危险因素之一。糖尿病患者心房颤动的发病率增加与心房结构和电重构有关。基于糖尿病心房电生理变化的研究,本文主要研究心房心肌细胞的电重构,包括钠通道的重塑,钙通道,钾通道和其他通道,为糖尿病合并房颤患者抗心律失常药物的临床管理提供依据。
    Atrial fibrillation (AF) is one of the most common arrhythmias in medical practice. Diabetes mellitus (DM) is one of the independent risk factors for atrial fibrillation. The increased morbility of atrial fibrillation in diabetes mellitus is related to both structural and electrical remodeling of atrium. Based on studies of atrial electrophysiological changes in diabetes mellitus, this article focuses on the electrical remodeling of atrial cardiomyocytes, including remodeling of sodium channels, calcium channels, potassium channels and other channels, to provide the basis for the clinical management of antiarrhythmic drugs in diabetic patients with atrial fibrillation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    前列腺素E2(PGE2)是炎性痛觉过敏的主要贡献者,然而,它调节伤害性轴突活动的程度尚不完全清楚。我们开发并表征了微流体细胞培养模型,以研究背根神经节神经元轴突的敏化。我们表明,将PGE2应用于流体分离的轴突会导致其对去极化刺激的反应敏感。有趣的是,将PGE2应用于DRG轴突会引起直接和持续的尖峰活动,传播到体细胞。EP4受体抑制剂和cAMP合成阻断剂消除了轴突的持续活性和膜去极化。对加标活性机制的进一步研究表明,Nav1.8钠通道阻滞剂抑制了PGE2诱发的去极化,但对TTX或扎特拉定的应用是难以反应的。有趣的是,通过用T16Ainh-A01阻断ANO1通道来阻断轴突的去极化。我们进一步表明,用Na-K-2Cl协同转运蛋白NKCC1抑制剂布美他尼治疗后,由于轴突内氯化物梯度的变化,PGE2引起的轴突反应发生了变化,但不是VU01240551氯化钾转运蛋白KCC2的抑制剂。我们的数据证明了PGE2/EP4/cAMP途径的新作用,该途径最终导致了通过ANO1通道的氯化物电流介导的感觉轴突的持续去极化。因此,使用微流体培养模型,我们为PGE2在炎性疼痛中的潜在双重功能提供了证据:它使痛觉轴突的去极化诱发反应敏感,并通过激活ANO1和Nav1.8通道直接触发动作电位.
    Prostaglandin E2 (PGE2) is a major contributor to inflammatory pain hyperalgesia, however, the extent to which it modulates the activity of nociceptive axons is incompletely understood. We developed and characterized a microfluidic cell culture model to investigate sensitisation of the axons of dorsal root ganglia neurons. We show that application of PGE2 to fluidically isolated axons leads to sensitisation of their responses to depolarising stimuli. Interestingly the application of PGE2 to the DRG axons elicited a direct and persistent spiking activity propagated to the soma. Both the persistent activity and the membrane depolarisation in the axons are abolished by the EP4 receptor inhibitor and a blocker of cAMP synthesis. Further investigated into the mechanisms of the spiking activity showed that the PGE2 evoked depolarisation was inhibited by Nav1.8 sodium channel blockers but was refractory to the application of TTX or zatebradine. Interestingly, the depolarisation of axons was blocked by blocking ANO1 channels with T16Ainh-A01. We further show that PGE2-elicited axonal responses are altered by the changes in chloride gradient within the axons following treatment with bumetanide a Na-K-2Cl cotransporter NKCC1 inhibitor, but not by VU01240551 an inhibitor of potassium-chloride transporter KCC2. Our data demonstrate a novel role for PGE2/EP4/cAMP pathway which culminates in a sustained depolarisation of sensory axons mediated by a chloride current through ANO1 channels. Therefore, using a microfluidic culture model, we provide evidence for a potential dual function of PGE2 in inflammatory pain: it sensitises depolarisation-evoked responses in nociceptive axons and directly triggers action potentials by activating ANO1 and Nav1.8 channels.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在心脏的不同区域,动作电位波形由于钠的表达不同而不同,钙,和钾通道。心肌梗死(MI)的特征之一是氧气供需失衡,导致离子失衡。MI之后,K+的调节和表达水平,Ca2+,心肌细胞中的Na+离子通道被改变,影响心律的规律性,导致心肌损伤。心肌成纤维细胞是MI修复进程中的主要效应细胞。心肌成纤维细胞的离子通道在MI的进程中起主要感化。同时,大量的离子通道在免疫细胞中表达,通过调节离子的流入和流出来完成细胞内信号转导,发挥重要作用。离子通道广泛分布于多种细胞中,是药物开发的有吸引力的靶标。本文综述了MI后不同离子通道的变化以及这些离子通道的治疗药物。我们分析了心肌离子通道调节背后的复杂分子机制和离子通道药物治疗的挑战。
    In different areas of the heart, action potential waveforms differ due to differences in the expressions of sodium, calcium, and potassium channels. One of the characteristics of myocardial infarction (MI) is an imbalance in oxygen supply and demand, leading to ion imbalance. After MI, the regulation and expression levels of K+, Ca2+, and Na+ ion channels in cardiomyocytes are altered, which affects the regularity of cardiac rhythm and leads to myocardial injury. Myocardial fibroblasts are the main effector cells in the process of MI repair. The ion channels of myocardial fibroblasts play an important role in the process of MI. At the same time, a large number of ion channels are expressed in immune cells, which play an important role by regulating the in- and outflow of ions to complete intracellular signal transduction. Ion channels are widely distributed in a variety of cells and are attractive targets for drug development. This article reviews the changes in different ion channels after MI and the therapeutic drugs for these channels. We analyze the complex molecular mechanisms behind myocardial ion channel regulation and the challenges in ion channel drug therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Editorial
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Historical Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    恢复钠电流(INaR)激活膜复极化,例如在神经元动作电位下降期间。由于其独特的激活特性,INaR被认为驱动高速率的重复神经元放电。然而,INaR通常与钠电流(INaP)的持续或非失活部分结合进行研究。我们使用动态钳夹测试INaR和INaP如何单独影响雄性和雌性小鼠成年小脑Purkinje神经元的重复放电。我们了解到,由于INaR在亚阈值电压下快速衰减,因此无法缩放重复点火率,亚阈值INaP对调节神经元放电率至关重要。对这些研究中使用的Nav电导模型的调整表明,INaP和INaR可以通过调整缓慢失活动力学状态下的占有率来反向缩放。加上额外的动态夹具实验,这些数据表明钠通道缓慢失活的调节可以微调INaP和Purkinje神经元重复放电率。跨神经元细胞类型的重要性声明,复苏的钠电流(INaR-)通常与驱动高速率的重复放电有关。使用动态夹具,我们确定INaR对驱动后续动作电位无效,并且亚阈值持续钠电流(INaP)是缩放重复激发率的关键参数。我们提出在天然神经元中测量的INaR可能反映了INaP大小被微调的机制。
    The resurgent sodium current (INaR) activates on membrane repolarization, such as during the downstroke of neuronal action potentials. Due to its unique activation properties, INaR is thought to drive high rates of repetitive neuronal firing. However, INaR is often studied in combination with the persistent or noninactivating portion of sodium currents (INaP). We used dynamic clamp to test how INaR and INaP individually affect repetitive firing in adult cerebellar Purkinje neurons from male and female mice. We learned INaR does not scale repetitive firing rates due to its rapid decay at subthreshold voltages and that subthreshold INaP is critical in regulating neuronal firing rate. Adjustments to the voltage-gated sodium conductance model used in these studies revealed INaP and INaR can be inversely scaled by adjusting occupancy in the slow-inactivated kinetic state. Together with additional dynamic clamp experiments, these data suggest the regulation of sodium channel slow inactivation can fine-tune INaP and Purkinje neuron repetitive firing rates.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    癫痫有许多特定的机制。对导致癫痫发作的神经动力学的理解对于揭示病理机制和开发治疗方法很重要。我们研究了导致Dravet综合征(DS)患者和小鼠模型惊厥性癫痫发作的电图活动和神经动力学,发育性和癫痫性脑病,其中GABA能神经元的兴奋性低下被认为是主要功能障碍。我们分析了携带SCN1A致病变异的DS患者的脑电图,以及硬膜外脑电图,海马局部场电位,Scn1a+/-和Scn1aRH/+DS小鼠海马单单位神经元活动。引人注目的是,大多数癫痫发作在患者和小鼠中都是低电压快速发作的,这被认为是由GABA能中间神经元的过度活跃产生的,与DS的主要病理机制相反。分析单单元记录,我们观察到,在癫痫发作(发作前)之前,假定的中间神经元放电的时间混乱先于癫痫发作时的活动增加,以及整个神经元网络。此外,我们在Scn1a小鼠和患者脑电图的海马和皮质场电位的频谱特征中发现了发作前期的早期特征,这与我们在单个神经元中观察到的功能障碍一致,并允许癫痫发作预测。因此,中间神经元的扰动的发作前活动导致它们在全身性癫痫发作时的过度活跃,具有与其他癫痫中观察到的类似的低电压快速特征,并且由GABA能神经元的过度活跃触发。发作前光谱特征可用作预测性癫痫发作生物标志物。
    Epilepsies have numerous specific mechanisms. The understanding of neural dynamics leading to seizures is important for disclosing pathological mechanisms and developing therapeutic approaches. We investigated electrographic activities and neural dynamics leading to convulsive seizures in patients and mouse models of Dravet syndrome (DS), a developmental and epileptic encephalopathy in which hypoexcitability of GABAergic neurons is considered to be the main dysfunction. We analyzed EEGs from DS patients carrying a SCN1A pathogenic variant, as well as epidural electrocorticograms, hippocampal local field potentials, and hippocampal single-unit neuronal activities in Scn1a+/- and Scn1aRH/+ DS mice. Strikingly, most seizures had low-voltage-fast onset in both patients and mice, which is thought to be generated by hyperactivity of GABAergic interneurons, the opposite of the main pathological mechanism of DS. Analyzing single-unit recordings, we observed that temporal disorganization of the firing of putative interneurons in the period immediately before the seizure (preictal) precedes the increase of their activity at seizure onset, together with the entire neuronal network. Moreover, we found early signatures of the preictal period in the spectral features of hippocampal and cortical field potential of Scn1a mice and of patients\' EEG, which are consistent with the dysfunctions that we observed in single neurons and that allowed seizure prediction. Therefore, the perturbed preictal activity of interneurons leads to their hyperactivity at the onset of generalized seizures, which have low-voltage-fast features that are similar to those observed in other epilepsies and are triggered by hyperactivity of GABAergic neurons. Preictal spectral features may be used as predictive seizure biomarkers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    臂旁外侧核(PBL)与呼吸活动的调节有关。钠泄漏通道(NALCN)突变会破坏啮齿动物和人类的呼吸节律并影响麻醉敏感性。这里,我们研究了PBL谷氨酸能神经元中的NALCN是否在全身麻醉下维持呼吸功能。我们的结果表明,PBL谷氨酸能神经元的化学遗传激活增加了小鼠的呼吸频率(RF);而化学遗传抑制抑制了RF。在生理条件下,PBL谷氨酸能神经元而不是GABA能神经元中的NALCN敲低显著降低RF,并在七氟醚麻醉下引起更多的呼吸抑制。PBL谷氨酸能神经元中的NALCN敲低并没有进一步加剧丙泊酚或吗啡诱导的呼吸抑制。七氟醚麻醉下,疼痛刺激迅速增加射频,PBL谷氨酸能神经元中不受NALCN敲低的影响。这项研究表明,NALCN是PBL谷氨酸能神经元中的关键离子通道,在挥发性麻醉剂七氟醚而不是静脉麻醉剂异丙酚下维持呼吸频率。
    The lateral parabrachial nucleus (PBL) is implicated in the regulation of respiratory activity. Sodium leak channel (NALCN) mutations disrupt the respiratory rhythm and influence anesthetic sensitivity in both rodents and humans. Here, we investigated whether the NALCN in PBL glutamatergic neurons maintains respiratory function under general anesthesia. Our results showed that chemogenetic activation of PBL glutamatergic neurons increased the respiratory frequency (RF) in mice; whereas chemogenetic inhibition suppressed RF. NALCN knockdown in PBL glutamatergic neurons but not GABAergic neurons significantly reduced RF under physiological conditions and caused more respiratory suppression under sevoflurane anesthesia. NALCN knockdown in PBL glutamatergic neurons did not further exacerbate the respiratory suppression induced by propofol or morphine. Under sevoflurane anesthesia, painful stimuli rapidly increased the RF, which was not affected by NALCN knockdown in PBL glutamatergic neurons. This study suggested that the NALCN is a key ion channel in PBL glutamatergic neurons that maintains respiratory frequency under volatile anesthetic sevoflurane but not intravenous anesthetic propofol.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    小纤维神经病(SFN)是一种常见的和衰弱的疾病,其中小直径的感觉轴突的末端退化,产生感官损失,和许多患者的神经性疼痛。虽然大量病例可归因于糖尿病,近50%是特发性的。该疾病的一个未被重视的方面是其在大多数患者中的晚期发作。产生SFN的人类基因突变的动物模型也显示出年龄依赖性表型,表明衰老是该疾病发展风险的重要因素。在这篇综述中,我们定义了SFN中特定的感觉神经元如何受到影响,并讨论了衰老如何驱动疾病。我们还评估了SFN的动物模型如何定义疾病机制,这些机制将提供对早期风险检测的洞察力,并提出新的治疗干预措施。
    Small fiber neuropathy (SFN) is a common and debilitating disease in which the terminals of small diameter sensory axons degenerate, producing sensory loss, and in many patients neuropathic pain. While a substantial number of cases are attributable to diabetes, almost 50% are idiopathic. An underappreciated aspect of the disease is its late onset in most patients. Animal models of human genetic mutations that produce SFN also display age-dependent phenotypes suggesting that aging is an important contributor to the risk of development of the disease. In this review we define how particular sensory neurons are affected in SFN and discuss how aging may drive the disease. We also evaluate how animal models of SFN can define disease mechanisms that will provide insight into early risk detection and suggest novel therapeutic interventions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号