Sodium Channels

钠通道
  • 文章类型: Journal Article
    目的:成纤维细胞生长因子12(FGF12)可能是神经元网络活动的重要调节剂,并与发育性和癫痫性脑病(DEE)有关。我们试图确定FGF12相关疾病的潜在病理机制。
    方法:通过已发表的病例报告确定了FGF12致病变异的患者,GeneMatcher和自己的病例集的整个外显子组测序。通过在神经元样细胞(ND7/23)中共表达野生型和突变型FGF12与钠通道NaV1.2或NaV1.6,包括其β-1和β-2钠通道亚基(SCN1B和SCN2B),研究了两种错义和两种拷贝数变体(CNV)的功能后果。
    结果:确定了FGF12中的四种变体用于功能分析:自闭症谱系障碍患者中的一种新型FGF12变体和先前发表的受DEE影响的患者中的三种变体。我们证明了野生型和突变型FGF12对NaV1.2和NaV1.6通道的差异调节作用。这里,FGF12变体导致对NaV1.2和NaV1.6的复杂动力学影响,包括快速和缓慢失活中的功能损失以及获得变化。
    结论:我们可以证明FGF12对NaV1.2和NaV1.6的详细调节作用,并证实了FGF12对神经元网络活性的复杂作用。我们的发现扩展了与FGF12变异相关的表型谱,并阐明了潜在的病理机制。FGF12相关疾病中的特定变体可能适合于用钠通道阻断剂进行精确治疗。
    背景:DFG,BMBF,Hartwell基金会,国家神经疾病和中风研究所,IDDRC,ENGIN,NIH,ITMAT,ILAE,RES和GRIN。
    OBJECTIVE: Fibroblast Growth Factor 12 (FGF12) may represent an important modulator of neuronal network activity and has been associated with developmental and epileptic encephalopathy (DEE). We sought to identify the underlying pathomechanism of FGF12-related disorders.
    METHODS: Patients with pathogenic variants in FGF12 were identified through published case reports, GeneMatcher and whole exome sequencing of own case collections. The functional consequences of two missense and two copy number variants (CNVs) were studied by co-expression of wildtype and mutant FGF12 in neuronal-like cells (ND7/23) with the sodium channels NaV1.2 or NaV1.6, including their beta-1 and beta-2 sodium channel subunits (SCN1B and SCN2B).
    RESULTS: Four variants in FGF12 were identified for functional analysis: one novel FGF12 variant in a patient with autism spectrum disorder and three variants from previously published patients affected by DEE. We demonstrate the differential regulating effects of wildtype and mutant FGF12 on NaV1.2 and NaV1.6 channels. Here, FGF12 variants lead to a complex kinetic influence on NaV1.2 and NaV1.6, including loss- as well as gain-of function changes in fast and slow inactivation.
    CONCLUSIONS: We could demonstrate the detailed regulating effect of FGF12 on NaV1.2 and NaV1.6 and confirmed the complex effect of FGF12 on neuronal network activity. Our findings expand the phenotypic spectrum related to FGF12 variants and elucidate the underlying pathomechanism. Specific variants in FGF12-associated disorders may be amenable to precision treatment with sodium channel blockers.
    BACKGROUND: DFG, BMBF, Hartwell Foundation, National Institute for Neurological Disorders and Stroke, IDDRC, ENGIN, NIH, ITMAT, ILAE, RES and GRIN.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Case Reports
    OBJECTIVE: To explore the genetic etiology of a child with autism, mental retardation and epilepsy.
    METHODS: Conventional G-banding chromosomal analysis was carried out. Chromosomal variation was also detected by single nucleotide polymorphism microarray (SNP array). Pathogenic mutations were screened by high-throughput sequencing and validated by Sanger sequencing. Pathologic significance of the candidate mutations was analyzed through search of database and literature review.
    RESULTS: No karyotypic abnormality was found with the child and his parents, while SNP array has detected a 460 kb deletion in the 14q11.2 region in the child. High-throughput and Sanger sequencing revealed a novel mutation of the NALCN gene in the child, in addition with a hemizygous mutation of the COL4A5 gene in the child and his mother.
    CONCLUSIONS: The 14q11.2 microdeletion and NALCN mutation may contribute to the autism, mental retardation and epilepsy in this child.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Case Reports
    Mutations in voltage-gated sodium channel (SCN) genes are supposed to be of importance in the etiology of psychiatric and neurological diseases, in particular in the etiology of seizures. Previous studies report a potential susceptibility region at the chromosomal locus 2q including SCN1A, SCN2A and SCN3A genes for autism spectrum disorder (ASD). To date, there is no previous description of a patient with comorbid ASD and Tourette syndrome showing a deletion containing SCN2A and SCN3A.
    We present the unique complex case of a 28-year-old male patient suffering from developmental retardation and exhibiting a range of behavioral traits since birth. He received the diagnoses of ASD (in early childhood) and of Tourette syndrome (in adulthood) according to ICD-10 and DSM-5 criteria. Investigations of underlying genetic factors yielded a heterozygous microdeletion of approximately 719 kb at 2q24.3 leading to a deletion encompassing the five genes SCN2A (exon 1 to intron 14-15), SCN3A, GRB14 (exon 1 to intron 2-3), COBLL1 and SCL38A11.
    We discuss the association of SCN2A, SCN3A, GRB14, COBLL1 and SCL38A11 deletions with ASD and Tourette syndrome and possible implications for treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Expediting pediatric access to new antiseizure drugs is particularly compelling, because epileptic seizures are the most common serious neurological symptom in children. Analysis of antiepileptic drug (AED) efficacy outcomes of randomized controlled trials, conducted during the past 20 years in different populations and a broad range of study sites and countries, has shown considerable consistency for each drug between adult and pediatric populations. Historically, the majority of regulatory approvals for AEDs have been for seizure types and not for specific epilepsy syndromes. Available data, both anatomical and neurophysiological, support a similar pathophysiology of focal seizures in adults and young children, and suggest that by age 2 years the structural and physiological milieu upon which seizures develop is similar. Although the distribution of specific etiologies and epilepsy syndromes is different in children from in adults, this should not impact approvals of efficacy based on seizure type, because the pathophysiology of focal seizures and the drug responsiveness of these seizure types are quite similar. Safety and pharmacokinetics cannot be extrapolated from adults to children. The scientific rationale, clinical consensus, and published data support a future approach accepting efficacy data from adult trials and focusing exclusively on prospective pharmacokinetic, tolerability, and safety studies and long-term follow-up in children. Whereas tolerability studies can be compared easily in children and adults, safety studies require large numbers of patients followed for many years.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Adverse outcome pathways (AOPs) describe toxicant effects as a sequential chain of causally linked events beginning with a molecular perturbation and culminating in an adverse outcome at an individual or population level. Strategies for developing AOPs are still evolving and depend largely on the intended use or motivation for development and data availability. The present review describes 4 ecotoxicological AOP case studies, developed for different purposes. In each situation, creation of the AOP began in a manner determined by the initial motivation for its creation and expanded either to include additional components of the pathway or to address the domains of applicability in terms of chemical initiators, susceptible species, life stages, and so forth. Some general strategies can be gleaned from these case studies, which a developer may find to be useful for supporting an existing AOP or creating a new one. Several web-based tools that can aid in AOP assembly and evaluation of weight of evidence for scientific robustness of AOP components are highlighted. Environ Toxicol Chem 2017;36:1429-1449. © 2017 SETAC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Case Reports
    We report the case of a 2-month old infant who experienced recurrent sustained ventricular tachycardia (VT) in a structurally normal heart. Resting electrocardiogram (ECG) showed wide QRS with a complete right bundle branch bloc (RBBB) morphology. There was no family history of syncope or sudden death, but the ECGs of the father and the brother showed incomplete RBBB with negative T waves on V1 lead. This case seems to fit well with the newly defined entity of Brugada-like syndrome with a highly suspected genetic underlying disposition.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Case Reports
    背景:德拉韦综合征,一种罕见的遗传性早发性癫痫脑病,1978年由Dravet首次描述。Dravet综合征最常见的原因是编码神经元电压门控钠通道1型亚基的SCN1A基因的各种突变。
    方法:由于反复发作和发育迟缓,来自以色列阿拉伯社区的一个非血缘关系的巴勒斯坦家庭的两个姐妹参加了我们的儿童发育和儿科神经科诊所。从所有家庭成员的外周血淋巴细胞中提取基因组DNA,通过Sanger测序在两个受影响的兄弟姐妹中发现了外显子10中的SCN1A突变,但在父母中却没有。我们的数据显示了一例由两个受影响的兄弟姐妹中的新型杂合SCN1A缺失(c.1458_1465delCTCTAAGT)引起的Dravet综合征。我们的发现增加了SCN1A基因中已知的突变谱,并证实了亲本镶嵌性是与该疾病传播相关的机制。
    结论:这些病例证实了父母在Dravet综合征传播中的镶嵌性,并增加了SCN1A基因的已知突变谱。关于父母镶嵌的重复报道应该提醒我们,即使突变显然是从头突变,也有复发的风险。
    BACKGROUND: Dravet syndrome, a rare genetic disorder with early-onset epileptic encephalopathy, was first described by Dravet in 1978. Dravet syndrome is most frequently caused by various mutations of the SCN1A gene encoding the type 1 subunit of the neuronal voltage-gated sodium channel.
    METHODS: Two sisters of a non-consanguineous Palestinian family from the Arab community in Israel attended our child development and pediatric neurology clinic due to recurrent seizures and developmental delay. Genomic DNA was extracted from peripheral blood lymphocytes of all family members and a SCN1A mutation in exon 10 was revealed by Sanger sequencing in both affected siblings but not in the parents. Our data present a case of Dravet syndrome caused by a novel heterozygous SCN1A deletion (c.1458_1465delCTCTAAGT) in two affected siblings. Our findings add to the spectrum of mutations known in the SCN1A gene and confirm parental mosaicism as a mechanism relevant for transmission of this disease.
    CONCLUSIONS: These cases confirm parental mosaicism in the transmission of Dravet syndrome and add to the spectrum of known mutations of the SCN1A gene. Repeated reports on parental mosaicism should remind us that there is a risk of recurrence even if the mutation is apparently de novo.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Case Reports
    BACKGROUND: Lacosamide treats partial seizures by enhancing slow inactivation of voltage-gated sodium channels. The described cardiac toxicity of lacosamide in the literature to date includes atrioventricular blockade (PR prolongation), atrial flutter, atrial fibrillation, sinus pauses, ventricular tachycardia and a single cardiac arrest. We report a second case of cardiac arrest following an intentional lacosamide overdose.
    METHODS: A 16 year-old female with a seizure disorder was found unresponsive in pulseless ventricular tachycardia after intentionally ingesting 4.5 g (76 mg/kg) lacosamide, 120 mg (2 mg/kg) cyclobenzaprine and an unknown amount of levetiracetam. Exact time of ingestion was unknown. Her initial electrocardiogram (ECG) demonstrated sinus tachycardia at 139 beats per minute, QRS duration 112 ms, and terminal R-wave in lead aVR > 3 mm. Despite treatment with 150 mEq of sodium bicarbonate, she had persistent EKG findings eight hours after presentation. Her serum lacosamide concentration nine hours after presentation was elevated at 22.8 μg/mL, while serum cyclobenzaprine concentration was 16 ng/mL (therapeutic: 10-30 ng/mL), and serum levetiracetam concentration was 22.7 μg/mL (therapeutic: 12-46 μg/mL). On hospital day three, ECG demonstrated resolution of the terminal R-wave with QRS of 78 ms. The patient recovered without physical or neurologic sequelae.
    CONCLUSIONS: The patient\'s lacosamide, cyclobenzaprine and levetiracetam overdose was associated with QRS prolongation and terminal right axis deviation--suggesting sodium channel blockade as a likely etiology for her cardiac arrest. Cyclobenzaprine has potential for sodium channel blockade and ventricular dysrhythmias although cardiac toxicity due to cyclobenzaprine alone is rare. The combination of cyclobenzaprine with lacosamide may have resulted in cardiovascular collapse. In conclusion, overdose of lacosamide combined with therapeutic concentrations of sodium channel blocking xenobiotics may cause cardiac conduction delays and cardiac arrest.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Case Reports
    Mutations in sodium channel genes are highly associated with epilepsy. Mutation of SCN1A, the gene encoding the voltage gated sodium channel (VGSC) alpha subunit type 1 (Nav1.1), causes Dravet syndrome spectrum disorders. Mutations in SCN2A have been identified in patients with benign familial neonatal-infantile epilepsy (BFNIE), generalised epilepsy with febrile seizures plus (GEFS+), and a small number of reported cases of other infantile-onset severe intractable epilepsy. Here, we report three patients with infantile-onset severe intractable epilepsy found to have de novo mutations in SCN2A. While a causal role for these mutations cannot be directly established, these findings contribute to growing evidence that mutation of SCN2A is associated with a range of epilepsy phenotypes including severe infantile-onset epilepsy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    High-frequency action potentials are mediated by voltage-gated sodium channels, composed of one large α subunit and two small β subunits, encoded mainly by SCN1A, SCN2A, SCN3A, SCN1B, and SCN2B genes in the brain. These play a key role in epilepsy, with the most commonly mutated gene in epilepsy being SCN1A. We examined whether polymorphisms in the above genes affect epilepsy risk in 1,529 epilepsy patients and 1,935 controls from four ethnicities or locations: Malay, Indian, and Chinese, all from Malaysia, and Chinese from Hong Kong. Of patients, 19 % were idiopathic, 42 % symptomatic, and 40 % cryptogenic. We genotyped 43 polymorphisms: 27 in Hong Kong, 28 in Malaysia, and 12 in both locations. The strongest association with epilepsy was rs3812718, or SCN1A IVS5N+5G>A: odds ratio (OR) = 0.85 for allele G (p = 0.0009) and 0.73 for genotype GG versus AA (p = 0.003). The OR was between 0.76 and 0.87 for all ethnicities. Meta-analysis confirmed the association (OR = 0.81 and p = 0.002 for G, and OR = 0.67 and p = 0.007 for GG versus AA), which appeared particularly strong for Indians and for febrile seizures. Allele G affects splicing and speeds recovery from inactivation. Since SCN1A is preferentially expressed in inhibitory neurons, G may decrease epilepsy risk. SCN1A rs10188577 displayed OR = 1.20 for allele C (p = 0.003); SCN2A rs12467383 had OR = 1.16 for allele A (p = 0.01), and displayed linkage disequilibrium with rs2082366 (r (2) = 0.67), whose genotypes tended toward association with SCN2A brain expression (p = 0.10). SCN1A rs2298771 was associated in Indians (OR = 0.56, p = 0.005) and SCN2B rs602594 with idiopathic epilepsy (OR = 0.62, p = 0.002). Therefore, sodium channel polymorphisms are associated with epilepsy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号