Rana pipiens

  • 文章类型: Journal Article
    短链全氟烷基羧酸(PFCA)已在全球环境中检测到。这些化合物在环境中的存在和持久性可能导致长期的野生动物暴露。我们使用北豹蛙(Ranapipiens)t来研究两种短链PFCA的慢性毒性和生物浓缩作用,全氟丁酸(PFBA)和全氟己酸(PFHxA)。我们将Gosner阶段25t暴露于标称浓度为0.1、1、10、100和1000µg/L的PFBA和PFHxA(作为单独的化学物质),持续43-46天。暴露于0.1至100µg/L的PFBA和PFHxA的t具有明显更高的平均鼻孔至排气长度,平均质量,和缩放质量指数比对照t。这些结果表明,暴露于短链PFCA会影响t的生长。有必要进一步研究导致观察到的t生长变化的机制。我们观察到PFBA1µg/L治疗组中男性的比例明显更高,然而,在就PFCA对两栖动物性别比例的影响做出具体结论之前,还需要进一步的组织学分析来确认视觉性别识别。组织中的PFBA浓度高于PFHxA浓度;这种模式与以前发表的使用鱼类的研究形成对比,表明分类群之间在PFBA和PFHxA生物浓缩方面的潜在差异。生物富集因子<10L/kg湿重,表明t的生物富集潜力低。我们的结果表明,PFBA和PFHxA可能在环境相关浓度(0.1-10µg/L)下产生影响,需要进一步研究才能将这些化合物视为其长链对应物的“安全”替代品。
    Short-chain perfluoroalkyl carboxylic acids (PFCAs) have been detected in the environment globally. The presence and persistence of these compounds in the environment may lead to chronic wildlife exposure. We used northern leopard frog (Rana pipiens) tadpoles to investigate the chronic toxicity and the bioconcentration of two short-chain PFCAs, perfluorobutanoic acid (PFBA) and perfluorohexanoic acid (PFHxA). We exposed Gosner stage 25 tadpoles to PFBA and PFHxA (as individual chemicals) at nominal concentrations of 0.1, 1, 10, 100, and 1000 µg/L for 43-46 days. Tadpoles exposed to 0.1 to 100 µg/L of PFBA and PFHxA had significantly higher mean snout-to-vent lengths, mean masses, and scaled mass indexes than control tadpoles. These results indicate that exposure to short-chain PFCAs influences tadpole growth. Further investigation into the mechanism(s) causing the observed changes in tadpole growth is warranted. We observed a significantly higher proportion of males in the PFBA 1 µg/L treatment group, however further histological analyses are required to confirm visual sex identification before making concrete conclusions on the effects of PFCAs on amphibian sex ratios. PFBA concentrations in tissues were higher than PFHxA concentrations; a pattern that contrasts with previously published studies using fish, suggesting potential differences between taxa in PFBA and PFHxA bioconcentration. Bioconcentration factors were <10 L/kg wet weight, indicating low bioconcentration potential in tadpoles. Our results suggest that PFBA and PFHxA may have effects at environmentally-relevant concentrations (0.1-10 µg/L) and further investigation is required before these compounds can be deemed a \"safe\" alternative to their long-chain counterparts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    这个未来,描述性研究侧重于肺吸虫(Haematoloechussp.,H)及其对pithedRanapipiens测量的全身和个体毛细血管变量的影响,一个长期的毛细血管生理学研究模型。根据H依恋确定了三组:无血球(无H),Haematoloechusnotattached(HNotAtt),和附加的Haematoloechus(HAtt)。在38个描述性的,心血管,和免疫学变量,18随H的变化显着。H的症状包括体重减轻,免疫细胞升高,心率变异性,更快的凝血,降低血细胞比容,和液体积聚。重要的毛细管功能发现包括水力传导率(Lp)的中值基线为7.0(无H),12.4(HNotAtt),和4.2(HAtt)x10-7厘米。s-1.cmH2O-1(P<0.0001)加上sigmadeltapi(s(pc-pi),P=0.03)。HNotAtt和HAtt中的Lp和血浆亚硝酸盐/硝酸盐浓度([NOx])揭示了促炎和抗炎阶段,HAtt中的毛细管壁拉伸强度增加。由于较低的水肿,H附着对宿主有利,并且通过持续的食物来源对寄生虫有利,这是自然共生的一个很好的例子。然而,H依恋也导致宿主体重减轻:及时,一个高度依赖的寄生虫的难题。该研究通过揭示H和以前未知的有趣影响,增加了对象牙的整体了解。自然发生的许多变量的季节性变化。数据改善了Ranapipiens作为一般的科学和毛细血管生理学模型。炎症和中风疾病是临床应用之一。
    This prospective, descriptive study focused on lung flukes (Hematoloechus sp., H) and their impact on systemic and individual capillary variables measured in pithed Rana pipiens, a long-standing model for studies of capillary physiology. Three groups were identified based on Hematoloechus attachment: no Hematoloechus (No H), Hematoloechus not attached (H Not Att), and Hematoloechus attached (H Att). Among 38 descriptive, cardiovascular, and immunological variables, 18 changed significantly with H. Symptoms of H included weight loss, elevated immune cells, heart rate variability, faster coagulation, lower hematocrit, and fluid accumulation. Important capillary function discoveries included median baselines for hydraulic conductivity (Lp) of 7.0 (No H), 12.4 (H Not Att), and 4.2 (H Att) × 10-7 cm·s-1·cmH2O-1 (P < 0.0001) plus seasonal adaptation of sigma delta pi [σ(πc-πi), P = 0.03]. Pro- and anti-inflammatory phases were revealed for Lp and plasma nitrite/nitrate concentration ([NOx]) in both H Not Att and H Att, whereas capillary wall tensile strength increased in the H Att. H attachment was advantageous for the host due to lower edema and for the parasite via a sustained food source illustrating an excellent example of natural symbiosis. However, H attachment also resulted in host weight loss: in time, a conundrum for the highly dependent parasite. The study increases overall knowledge of Rana pipiens by revealing intriguing effects of H and previously unknown, naturally occurring seasonal changes in many variables. The data improve Rana pipiens as a general scientific and capillary physiology model. Diseases of inflammation and stroke are among the clinical applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    形态差异,生态学,和行为通过个体发育可以导致相反的选择压力在不同的生命阶段。大多数动物,然而,通过两个或多个不同的表型阶段过渡,它被假设为允许每个生命阶段更自由地适应其生态位。这如何适用于感觉系统,特别是感官系统如何在分子水平上适应不同的生命阶段,不是很了解。这里,我们使用全眼转录组来研究t和幼年南方豹蛙(Lithobotessphenhephalus)之间的基因表达差异,它依赖于在水生和陆地光环境中的视觉,分别。因为视觉生理学会随着光照水平而变化,我们还测试了明暗曝光的效果。
    我们发现42%的基因在t与幼年的眼睛中差异表达,而5%的基因在光/暗暴露中差异表达。针对视觉基因的精选子集的分析揭示了控制视觉功能和发育方面的基因的显着差异表达,包括光谱灵敏度和透镜组成。最后,光感受器的显微分光光度法证实了表达结果预测的光谱灵敏度的变化,与适应不同的光环境相一致。
    总的来说,我们发现了t和幼鱼眼睛中广泛的表达水平差异,这些差异与通过变态观察到的形态和生理变化以及相应的适应性变化有关,以改善这些青蛙在其生命周期中栖息的不同水生和陆地光环境中的视力。更广泛地说,这些结果表明,基因表达的解耦可以介导具有复杂生命周期的生物体所经历的相反的选择压力,这些生物体在整个个体发育过程中生活在不同的环境条件下。
    Differences in morphology, ecology, and behavior through ontogeny can result in opposing selective pressures at different life stages. Most animals, however, transition through two or more distinct phenotypic phases, which is hypothesized to allow each life stage to adapt more freely to its ecological niche. How this applies to sensory systems, and in particular how sensory systems adapt across life stages at the molecular level, is not well understood. Here, we used whole-eye transcriptomes to investigate differences in gene expression between tadpole and juvenile southern leopard frogs (Lithobates sphenocephalus), which rely on vision in aquatic and terrestrial light environments, respectively. Because visual physiology changes with light levels, we also tested the effect of light and dark exposure.
    We found 42% of genes were differentially expressed in the eyes of tadpoles versus juveniles and 5% for light/dark exposure. Analyses targeting a curated subset of visual genes revealed significant differential expression of genes that control aspects of visual function and development, including spectral sensitivity and lens composition. Finally, microspectrophotometry of photoreceptors confirmed shifts in spectral sensitivity predicted by the expression results, consistent with adaptation to distinct light environments.
    Overall, we identified extensive expression-level differences in the eyes of tadpoles and juveniles related to observed morphological and physiological changes through metamorphosis and corresponding adaptive shifts to improve vision in the distinct aquatic and terrestrial light environments these frogs inhabit during their life cycle. More broadly, these results suggest that decoupling of gene expression can mediate the opposing selection pressures experienced by organisms with complex life cycles that inhabit different environmental conditions throughout ontogeny.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    特别需要开发用于两栖动物种群的保护工具,正在迅速下降。糖皮质激素激素如皮质酮(CORT)常被用作两栖动物应激的生物标志物。评估两栖动物CORT的一种相对较新的方法是测量保持两栖动物的水中CORT浓度(水性(WB)CORT)。这里,我们测试了WBCORT是否是幼虫和变质的北豹蛙(Lithobatespiens)中CORT的有效量度。我们评估了由于处理挑战而应具有不同CORT水平的动物组之间的WBCORT水平是否不同,药理学挑战(ACTH),或发展阶段。我们还评估了WBCORT是否与个体内的血浆CORT相关。结果表明,WBCORT的测量在原变质t中是有效的,因为注射ACTH增加了WBCORT,在大多数情况下,WBCORT和血浆CORT水平在动物体内相关。然而,无法完全验证WBCORT在变质青蛙(变质)中的使用,因为尽管注射ACTH会提高WBCORT的水平,WBCORT与单个变质中的血浆CORT无关。此外,在早期(变质前)t或经历变质高潮的t中,WBCORT与血浆CORT之间没有相关性,表明WBCORT不够灵敏,无法检测这些组中有机CORT的自然变化。一起,结果表明,WBCORT是评估北豹蛙血浆CORT的有效方法,但仅限于某些生活史阶段。我们的结果说明了仔细验证使用WBCORT对结果进行适当解释的重要性。
    There is a particular need to develop conservation tools for use in amphibian populations, which are declining rapidly. Glucocorticoid hormones like corticosterone (CORT) are often used as biomarkers of amphibian stress. A relatively new method of assessing CORT in amphibians is to measure CORT concentrations in water that has held amphibians (water-borne (WB) CORT). Here, we tested whether WB CORT is a valid measure of CORT in larval and metamorphic Northern Leopard Frogs (Lithobates pipiens). We assessed whether levels of WB CORT are different among groups of animals that should have different levels of CORT due to a handling challenge, a pharmacological challenge (ACTH), or developmental stage. We also assessed whether WB CORT was correlated with plasma CORT within individuals. Results indicated that measurement of WB CORT is valid in prometamorphic tadpoles because injection with ACTH increased WB CORT, and WB CORT and plasma CORT levels were correlated within an animal in most cases. However, were unable to fully validate the use of WB CORT in metamorphic frogs (metamorphs) because although injection with ACTH elevated levels of WB CORT, WB CORT was not correlated with plasma CORT within individual metamorphs. Also, there was no correlation between WB CORT and plasma CORT in early stage (premetamorphic) tadpoles or tadpoles undergoing metamorphic climax, indicating that WB CORT is not sensitive enough to detect natural variation of organismal CORT in these groups. Together, results indicated that WB CORT is a valid method of assessing plasma CORT in Northern Leopard Frogs, but only for some life-history stages. Our results illustrate the importance of carefully validating the use of WB CORT for appropriate interpretation of results.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Habitat loss, climate change, environmental contaminants, and parasites and pathogens are among the main factors thought to act singly or together in causing amphibian declines. We tested for combined effects of neonicotinoid pesticides and parasites (versus parasites-only) on mortality, growth, and white blood cell profiles of a model amphibian: the northern leopard frog (Rana pipiens). We first exposed infectious stages of frog trematodes (cercariae of Echinostoma spp.) to low and high concentrations of thiamethoxam or clothianidin versus water-only controls. There were no differences in survival of trematode cercariae between treatments. For the main experiment, we exposed tadpoles to clean water versus high concentrations of clothianidin or thiamethoxam for 2 weeks and added trematode cercariae to all tanks after 1 week. Exposure of tadpoles and parasites to high concentrations of thiamethoxam or clothianidin did not affect parasite infection success. Tadpole survival was not different between treatments before or after parasite addition and there were no significant differences in tadpole snout-to-vent lengths or developmental stages between treatments. Tadpoles exposed to thiamethoxam + parasites had smaller widths than parasite-only tadpoles, whereas tadpoles exposed to clothianidin + parasites had higher eosinophil to leukocyte ratios compared to parasite-only tadpoles. Tadpoles of both neonicotinoid + parasite treatments had significantly lower monocyte to leukocyte ratios relative to parasite-only tadpoles. High concentrations of neonicotinoid combined with parasites appear to influence tadpole immune function important for further defense against parasites and pathogens. This work highlights the need for more holistic approaches to ecotoxicity studies, using multiple stressors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Agricultural drainage ditches help remove excess water from fields and provide habitat for wildlife. Drainage ditch management, which includes various forms of vegetation clearing and sediment dredging, can variably affect the ecological function of these systems. To determine whether ditch conditions following dredging/vegetation clearing management affected the survival, growth, and development of embryos and tadpoles of northern leopard frogs (Lithobates pipiens), we conducted three field studies using in situ cages over 2 years. We measured nutrients, pesticides, and other water quality properties in vegetated/unmanaged (i.e., no clearing or dredging) and newly cleared/dredged (i.e., treeless, then dredged), clay-bottomed drainage ditches in a river basin in Eastern Ontario, Canada. Nutrients, atrazine, and total neonicotinoid concentrations were generally lower at the cleared/dredged sites, whereas glyphosate was at higher concentrations. In contrast, water-quality variables measured in situ, particularly temperature, dissolved oxygen, and turbidity, tended to be higher in the cleared/dredged sites. Total phosphorous and total organic carbon concentrations at all sites were above the recommended limits for amphibian assays. No significant differences were detected in the survival, hatching success, or development of embryos among the ditch management treatments, but premature hatching was observed at one vegetated/unmanaged site where high specific conductivity may have been formative. We found the cleared/dredged sites supported earlier tadpole growth and development, likely as a result of the higher water temperatures. Increased temperature may have offset other growth/development stressors, such as those related to water chemistry. However, the long-term consequences of these differences on amphibian populations requires further study.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Neonicotinoid pesticide use is widespread and highly debated, as evidenced by recent attention received from the public, academics and pesticide regulatory agencies. However, relatively little is known about the physiological effects of neonicotinoid insecticides on aquatic vertebrates. Amphibians (larval stages in particular) are excellent vertebrate bioindicators in aquatic systems due to their risk of exposure and sensitivity to environmental stressors. Previous work with wood frog (Rana sylvatica) tadpoles exposed to formulated products containing thiamethoxam or clothianidin in outdoor mesocosms found significant shifts in leukocyte profiles, suggesting the tadpoles were physiologically stressed. The main objective of the present study was to characterize this stress response further using complementary measures of stress after exposure to clothianidin on northern leopard frogs (Rana pipiens) during their aquatic larval stages. Laboratory static-renewal exposures were conducted over eight weeks with the technical product clothianidin at 0, 0.23, 1, 10 and 100 μg/L, and diquat dibromide at 532 μg/L was used as a positive control. We assessed tadpole leukocyte profiles and measures of oxidative stress as these sub-lethal alterations could affect amphibian fitness. We found changes in several types of leukocytes at 1 and 10 μg/L, suggesting that these tadpoles exhibited signs of mild physiological stress. Clothianidin also induced an oxidative stress response at 0.23, 1 and 100 μg/L. However, we found no differences in survival, growth, development time or hepatosomatic index in frogs exposed to clothianidin. Our study indicates that tadpoles chronically exposed to clothianidin have increased stress responses, but in the absence of concentration-response relationships and effects on whole-organism endpoints, the implications on the overall health and fitness of these changes are unclear.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Amphibians are declining globally. Exposure to pesticides has been implicated in decreasing amphibian immune function, thus increasing their susceptibility to parasites and disease and thereby negatively affecting individuals and populations. Amphibians are likely exposed to neonicotinoids because these widely used insecticides are highly soluble in water and because amphibian freshwater habitats are often embedded in agroecosystems. Herein, we investigate the effects of long-term exposure to two individual neonicotinoids (clothianidin or thiamethoxam) at either low or high concentrations (2.5 or 250 µg/L) on northern leopard frog (Lithobates pipiens) blood cell profiles and concentrations of corticosterone, an energy-mediating hormone associated with stress. Larval frogs from Gosner stage 25 to 46 were exposed to pesticide and control treatments in outdoor mesocosms. Corticosterone concentrations were measured after 6 d of exposure, and blood cell profiles were assessed once frogs reached Gosner stage 46 (following 8 w of exposure). No significant changes were found in erythrocyte counts, leukocyte counts, monocyte to leukocyte ratios or corticosterone concentrations between treatments. However, exposure to either 2.5 or 250 µg/L of clothianidin, or 250 µg/L of thiamethoxam decreased neutrophil to lymphocyte ratios and neutrophil to leukocyte ratios, and exposure to 2.5 µg/L of clothianidin or 250 µg/L of thiamethoxam decreased eosinophil to leukocyte ratios. Our results indicate that long-term exposure to neonicotinoids can alter leukocyte profiles, indicative of a stress response. Future studies should investigate whether chronic exposure to neonicotinoids affect multiple measures of stress differently or influences the susceptibility of amphibians to parasites and pathogens. Our work underscores the importance of continued use of multiple measures of stress for different amphibian species when undertaking ecotoxicological assessments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    We studied the temperature dependence of accumulation and elimination of two polychlorinated biphenyls (PCBs; PCB-70 and PCB-126) and a commercial mixture of congeners of polybrominated diphenyl ethers (PBDEs; DE-71™)) in Northern leopard frog (Lithobates pipiens) tadpoles. We reared tadpoles at 18, 23, or 27 °C for 5.3 or up to 13.6 weeks (longer at cooler temperature where development is slower) on diets containing the toxicants, each at several different toxicant concentrations, and compared tissue concentrations as a function of food concentration and rearing temperature. Following > 1 month of accumulation, tissue concentrations of all three toxicants in exposed tadpoles were linearly related to dietary concentrations as expected for first order kinetics, with no significant effect of rearing temperature.We also raised free-swimming L. pipiens tadpoles for 14 days on foods containing either toxicant at 18 or 27 °C during an accumulation phase, and then during depuration (declining toxicant) phase of 14 days we provided food without toxicants and measured the decline of toxicants in tadpole tissue. All the congeners were eliminated faster at warmer rearing temperature, as expected. Using Arrhenius\' equation, we calculated that the apparent activation energy for elimination of both PCB congeners by tadpoles was 1.21 eV (95% confidence interval 0.6-1.8 eV). We discuss how this value was within the range of estimates for metabolic reactions generally (range 0.2 - 1.2 eV), which might include metabolic pathways for biotransformation and elimination of PCBs. Furthermore, we discuss how the lack of an effect of rearing temperature on tadpole near-steady-state tissue residue levels suggests that faster elimination at the warmer temperature was balanced by faster uptake, which is plausible considering the similar temperature sensitivities (i.e., activation energies) of all these processes. Although interactions between toxicants and temperature can be complex and likely toxicant-dependent, it is plausible that patterns observed in tadpoles might apply to other aquatic organisms. Published data on depuration in 11 fish species eliminating 8 other organic toxicants indicated that they also had similar apparent activation energy for elimination (0.82 ± 0.12 eV; 95% confidence interval 0.56 - 1.08 eV), even though none of those studied toxicants were PCBs or PBDEs. Additional research on toxicant-temperature interactions can help improve our ability to predict toxicant bioaccumulation in warming climate scenarios.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    农药的使用程度比过去更大。一旦杀虫剂进入生态系统,许多环境因素会影响它们的停留时间。这些相互作用可以导致诸如易位,环境退化,和代谢激活促进暴露于目标和非目标物种。大多数无尾动物在水生环境中开始其生命周期,然后过渡到陆地栖息地。它们在水生环境中的时间通常很短;然而,在这一任期内发生了许多重要的发展阶段。变态后,大多数物种在陆地上度过了很多年,但迁移回水生环境进行繁殖。由于水生和陆地环境对两栖动物生命阶段的重要性,我们调查了暴露的途径(即,受污染土壤的吸收与从污染的地表水中摄取)会影响农药的生物利用度和四种农药的身体负担(联苯菊酯(BIF),毒死蜱(CPF),草甘膦(GLY),和trifloxystrobin(TFS))以及对成年豹蛙的肝代谢组的影响(变态后60-90天的Gosner阶段46)。在所有研究的农药中,与暴露于污染土壤的两栖动物相比,暴露于水中的两栖动物的身体负担浓度明显更高(ANOVAp<0.0001)。在推定鉴定的80种代谢物中,与土壤相比,大多数在暴露于农药污染水中的两栖动物中表现出更高的丰度。最终,这项研究将有助于填补监管数据空白,帮助创建更准确的两栖动物皮肤吸收模型,并为持续的生态风险评估工作提供信息。
    Pesticides are being applied at a greater extent than in the past. Once pesticides enter the ecosystem, many environmental factors can influence their residence time. These interactions can result in processes such as translocation, environmental degradation, and metabolic activation facilitating exposure to target and non-target species. Most anurans start off their life cycle in aquatic environments and then transition into terrestrial habitats. Their time in the aquatic environment is generally short; however, many important developmental stages occur during this tenure. Post-metamorphosis, most species spend many years on land but migrate back to the aquatic environment for breeding. Due to the importance of both the aquatic and terrestrial environments to the life stages of amphibians, we investigated how the route of exposure (i.e., uptake from contaminated soils vs. uptake from contaminated surface water) influences pesticide bioavailability and body burden for four pesticides (bifenthrin (BIF), chlorpyrifos (CPF), glyphosate (GLY), and trifloxystrobin (TFS)) as well as the impact on the hepatic metabolome of adult leopard frogs (Gosner stage 46 with 60-90 days post-metamorphosis). Body burden concentrations for amphibians exposed in water were significantly higher (ANOVA p < 0.0001) compared to amphibians exposed to contaminated soil across all pesticides studied. Out of 80 metabolites that were putatively identified, the majority expressed a higher abundance in amphibians that were exposed in pesticide contaminated water compared to soil. Ultimately, this research will help fill regulatory data gaps, aid in the creation of more accurate amphibian dermal uptake models and inform continued ecological risk assessment efforts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号