In vivo calcium imaging

体内钙成像
  • 文章类型: Journal Article
    帕金森病(PD)的特征是黑质纹状体多巴胺能途径的变性,通过皮质-基底神经节-丘脑运动网络的复杂变化影响运动控制,包括初级运动皮层(M1)。多巴胺能输入对M1神经元活性的调节,特别是来自腹侧被盖区(VTA)和黑质致密部(SNc),在PD病理生理学中起着至关重要的作用。这项研究使用体内钙成像研究了黑质纹状体多巴胺能变性如何影响大鼠的M1神经元活性。组织学分析证实多巴胺能病变的严重程度,高损伤水平大鼠表现出明显的运动缺陷。左旋多巴治疗改善了精细运动能力,特别是在高损伤水平的大鼠中。基于多巴胺能病变严重程度的M1钙信号分析揭示了不同的M1活性模式。低多巴胺能损伤的动物显示钙事件增加,而高损伤水平大鼠表现出活动下降,左旋多巴部分修复。这些发现表明M1活性对多巴胺能传递的瞬时波动更敏感,而不是慢性高或低多巴胺能信号。这项研究强调了多巴胺能信号和M1神经元活性在PD症状发展中的复杂相互作用。整合行为和钙成像数据的进一步研究可以阐明PD中运动缺陷和治疗反应的潜在机制。
    Parkinson\'s disease (PD) is marked by degeneration in the nigrostriatal dopaminergic pathway, affecting motor control via complex changes in the cortico-basal ganglia-thalamic motor network, including the primary motor cortex (M1). The modulation of M1 neuronal activity by dopaminergic inputs, particularly from the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc), plays a crucial role in PD pathophysiology. This study investigates how nigrostriatal dopaminergic degeneration influences M1 neuronal activity in rats using in vivo calcium imaging. Histological analysis confirmed dopaminergic lesion severity, with high lesion level rats showing significant motor deficits. Levodopa treatment improved fine motor abilities, particularly in high lesion level rats. Analysis of M1 calcium signals based on dopaminergic lesion severity revealed distinct M1 activity patterns. Animals with low dopaminergic lesion showed increased calcium events, while high lesion level rats exhibited decreased activity, partially restored by levodopa. These findings suggest that M1 activity is more sensitive to transient fluctuations in dopaminergic transmission, rather than to chronic high or low dopaminergic signaling. This study underscores the complex interplay between dopaminergic signaling and M1 neuronal activity in PD symptoms development. Further research integrating behavioral and calcium imaging data can elucidate mechanisms underlying motor deficits and therapeutic responses in PD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    焦虑是咽炎患者中非常常见的疾病,但是这些疾病之间的关系很少受到研究关注,潜在的神经机制仍然未知。这里,我们表明,密集的神经支配咽将咽部炎症诱导的信号传递给小鼠的颈/颈/岩(NJP)超神经节的舌咽和迷走神经感觉神经元。具体来说,NJP超神经节投射到孤束核(NTSNE)中的去甲肾上腺素能神经元。这些NTSNE神经元投射到末端纹状体(vBNST)的腹床核,在小鼠模型的咽部炎症中诱导焦虑样行为。抑制咽部→NJP→NTSNE→vBNST回路可缓解与咽部炎症相关的焦虑样行为。因此,这项研究定义了咽到脑轴,该轴在机械上将咽部炎症和情绪反应联系起来。
    Anxiety is a remarkably common condition among patients with pharyngitis, but the relationship between these disorders has received little research attention, and the underlying neural mechanisms remain unknown. Here, we show that the densely innervated pharynx transmits signals induced by pharyngeal inflammation to glossopharyngeal and vagal sensory neurons of the nodose/jugular/petrosal (NJP) superganglia in mice. Specifically, the NJP superganglia project to norepinephrinergic neurons in the nucleus of the solitary tract (NTSNE). These NTSNE neurons project to the ventral bed nucleus of the stria terminalis (vBNST) that induces anxiety-like behaviors in a murine model of pharyngeal inflammation. Inhibiting this pharynx→NJP→NTSNE→vBNST circuit can alleviate anxiety-like behaviors associated with pharyngeal inflammation. This study thus defines a pharynx-to-brain axis that mechanistically links pharyngeal inflammation and emotional response.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    由于未成熟大脑的可塑性,与成熟的大脑相比,生命早期的大脑改变被认为会导致更好的恢复。尽管有临床需要,神经元网络和相关行为如何受到生命早期大脑压力的影响,比如小儿脑震荡,被忽视了。在这里,我们在小鼠中提供了第一个证据,即生命早期的脑震荡可以持久地增加体感皮层到成年期的神经元活动,在动物执行与感觉相关的任务时破坏神经元整合。这代表了先前未被理解的与感官相关的行为表现受损的临床相关机制。此外,我们证明脑震荡后一年内源性大麻素系统的药理调节非常适合挽救神经元活动和可塑性,并规范与感官相关的行为表现,解决了一个基本问题,即一旦出现脑震荡后症状,是否仍然可以进行治疗,与临床治疗相容的时间窗。
    Due to the assumed plasticity of immature brain, early in life brain alterations are thought to lead to better recoveries in comparison to the mature brain. Despite clinical needs, how neuronal networks and associated behaviors are affected by early in life brain stresses, such as pediatric concussions, have been overlooked. Here we provide first evidence in mice that a single early in life concussion durably increases neuronal activity in the somatosensory cortex into adulthood, disrupting neuronal integration while the animal is performing sensory-related tasks. This represents a previously unappreciated clinically relevant mechanism for the impairment of sensory-related behavior performance. Furthermore, we demonstrate that pharmacological modulation of the endocannabinoid system a year post-concussion is well-suited to rescue neuronal activity and plasticity, and to normalize sensory-related behavioral performance, addressing the fundamental question of whether a treatment is still possible once post-concussive symptoms have developed, a time-window compatible with clinical treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    钙成像通常用于观察体内的神经活动。特别是,中尺度钙成像提供了大视场,允许同时询问跨神经轴的神经元集合。在发展神经科学领域,介观成像最近产生了有趣的结果,这些结果为从生命的最初阶段开始的神经回路的本体发生提供了新的启示。我们在这里总结了技术方法,数据分析的基本概念以及该技术在过去几年中提供的主要发现,专注于小鼠模型中的大脑发育。随着优化体内钙成像的新工具的发展,神经发育的基本原理应该从中尺度的角度进行修正,也就是说,考虑到整个大脑中神经元集合的广泛激活。在未来,将大脑背侧表面的中尺度成像与深层结构的成像相结合,将确保对电路结构的更完整理解。此外,中尺度钙成像与其他工具的结合,如电生理学或高分辨率显微镜,将弥补这种技术的空间和时间限制。
    Calcium imaging is commonly used to visualize neural activity in vivo. In particular, mesoscale calcium imaging provides large fields of view, allowing for the simultaneous interrogation of neuron ensembles across the neuraxis. In the field of Developmental Neuroscience, mesoscopic imaging has recently yielded intriguing results that have shed new light on the ontogenesis of neural circuits from the first stages of life. We summarize here the technical approaches, basic notions for data analysis and the main findings provided by this technique in the last few years, with a focus on brain development in mouse models. As new tools develop to optimize calcium imaging in vivo, basic principles of neural development should be revised from a mesoscale perspective, that is, taking into account widespread activation of neuronal ensembles across the brain. In the future, combining mesoscale imaging of the dorsal surface of the brain with imaging of deep structures would ensure a more complete understanding of the construction of circuits. Moreover, the combination of mesoscale calcium imaging with other tools, like electrophysiology or high-resolution microscopy, will make up for the spatial and temporal limitations of this technique.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    瘙痒是一种独特的感觉,会引起特定的感情和抓挠反应。在许多研究中,前扣带皮层(ACC)与瘙痒感有关;然而,它在处理瘙痒输入中的精确功能仍然未知。区分ACC在瘙痒感觉中的精确作用可能是具有挑战性的,因为其进行异源神经生理活动的能力。这里,我们使用体内钙成像来检查自由移动小鼠的ACC神经元对致痒组胺的反应。特别是,我们专注于ACC神经元的活动在抓挠反应前后的变化。我们发现,尽管神经元活动的变化与抓挠反应不同步,瘙痒反应神经元的整体活性在抓挠反应后迅速下降。这些发现表明ACC不会直接引起发痒的感觉。
    Itch is a distinctive sensation that causes a specific affection and scratching reaction. The anterior cingulate cortex (ACC) has been linked to itch sensation in numerous studies; however, its precise function in processing pruritic inputs remains unknown. Distinguishing the precise role of the ACC in itch sensation can be challenging because of its capacity to conduct heterologous neurophysiological activities. Here, we used in vivo calcium imaging to examine how ACC neurons in free-moving mice react to pruritogenic histamine. In particular, we focused on how the activity of the ACC neurons varied before and after the scratching response. We discovered that although the change in neuronal activity was not synchronized with the scratching reaction, the overall activity of itch-responsive neurons promptly decreased after the scratching response. These findings suggest that the ACC does not directly elicit the feeling of itchiness.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    疼痛的感知是由分布式大脑活动引起的多维感觉和情绪/情感体验。然而,受累的大脑区域对疼痛并不特异。因此,大脑皮层如何区分伤害性和其他令人厌恶和显著的感觉刺激仍然难以捉摸。此外,慢性神经性疼痛对感觉过程的影响尚未得到表征。在自由移动的小鼠中使用具有细胞分辨率的体内微镜钙成像,我们阐明了前扣带皮质的伤害性和感觉编码的原理,疼痛处理所必需的区域。我们发现人口活动,不是单细胞反应,允许区分有害和其他感官刺激,排除了伤害性感受特异性神经元的存在。此外,随着时间的推移,单细胞刺激选择性是高度动态的,但人口层面的刺激代表性保持稳定。周围神经损伤引起的慢性神经性疼痛通过加重对无害刺激的反应以及模式分离和刺激分类的损害而导致感觉事件的功能失调。通过镇痛治疗恢复了。这些发现为慢性神经性疼痛中皮质感觉过程的改变提供了新的解释,并提供了对皮质中全身镇痛治疗效果的见解。
    The perception of pain is a multidimensional sensory and emotional/affective experience arising from distributed brain activity. However, the involved brain regions are not specific for pain. Thus, how the cortex distinguishes nociception from other aversive and salient sensory stimuli remains elusive. Additionally, the resulting consequences of chronic neuropathic pain on sensory processing have not been characterized. Using in vivo miniscope calcium imaging with cellular resolution in freely moving mice, we elucidated the principles of nociceptive and sensory coding in the anterior cingulate cortex, a region essential for pain processing. We found that population activity, not single-cell responses, allowed discriminating noxious from other sensory stimuli, ruling out the existence of nociception-specific neurons. Additionally, single-cell stimulus selectivity was highly dynamic over time, but stimulus representation at the population level remained stable. Peripheral nerve injury-induced chronic neuropathic pain led to dysfunctional encoding of sensory events by exacerbation of responses to innocuous stimuli and impairment of pattern separation and stimulus classification, which were restored by analgesic treatment. These findings provide a novel interpretation for altered cortical sensory processing in chronic neuropathic pain and give insights into the effects of systemic analgesic treatment in the cortex.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    情景记忆被认为是由与记忆相关的区域中具有高兴奋性的稀疏分布的符合记忆条件的“启动”神经元优先编码的。基于对自由行为小鼠的体内钙成像,我们开发了一种分析方法来确定神经元活动层次并建立海马神经元。具有高活动和与记忆相关的突发同步的神经元被识别为启动的神经元。当形成或检索到恐惧记忆的痕迹时,钙动力学的主要模式主要由启动的神经元介导,并且与小鼠的冷冻行为高度相关。在纤毛敲除小鼠表现出严重的学习缺陷,它们的致敏神经元的百分比急剧下降,和任何突发同步被强烈抑制。始终如一,纤毛敲除神经元的第一个主要模式并不能完全将其与其他次要成分区分开来,也不能与小鼠的冷冻行为相关。为了揭示一部分神经元是如何被激活的,我们开发了一个神经网络的数值模型,该模型包含线性和非线性加权突触分量的模拟,分别对AMPAR和NMDAR介导的电导进行建模。中等的NMDAR与AMPAR比率可以自然地导致引发的神经元的出现。在这种情况下,神经元放电平均值显示右偏对数分布,类似于海马c-Fos表达的分布和体内钙成像测量的活性水平。此外,在迭代计算过程中,高基础神经元活动水平加速了活动层次结构的发展。一起,这项研究揭示了一种测量神经元活动层次的新方法。我们的模拟表明,由非线性加权突触成分介导的偏向性突触传递的积累代表了神经元启动的重要机制。
    While it is known that associative memory is preferentially encoded by memory-eligible \"primed\" neurons, in vivo neural activity hierarchy has not been quantified and little is known about how such a hierarchy is established. Leveraging in vivo calcium imaging of hippocampal neurons on freely behaving mice, we developed the first method to quantify real-time neural activity hierarchy in the CA1 region. Neurons on the top of activity hierarchy are identified as primed neurons. In cilia knockout mice that exhibit severe learning deficits, the percentage of primed neurons is drastically reduced. We developed a simplified neural network model that incorporates simulations of linear and non-linear weighted components, modeling the synaptic ionic conductance of AMPA and NMDA receptors, respectively. We found that moderate non-linear to linear conductance ratios naturally leads a small fraction of neurons to be primed in the simulated neural network. Removal of the non-linear component eliminates the existing activity hierarchy and reinstate it to the network stochastically primes a new pool of neurons. Blockade of NMDA receptors by ketamine not only decreases general neuronal activity causing learning impairments, but also disrupts neural activity hierarchy. Additionally, ketamine-induced super-synchronized slow oscillation during anesthesia can be simulated if the non-linear NMDAR component is removed to flatten activity hierarchy. Together, this study develops a unique method to measure neural activity hierarchy and identifies NMDA receptors as a key factor that controls the hierarchy. It presents the first evidence suggesting that hierarchy disruption by NMDAR blockade causes dissociation and psychosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    含有MECP2的基因组片段的重复导致男性严重的自闭症症状。过表达人MECP2基因的转基因小鼠表现出自闭症样行为。MECP2转基因(MECP2-TG)小鼠社会缺陷的神经回路仍然未知。为了观察MECP2-TG小鼠体内的神经活性,我们通过在MECP2-TG和野生型(WT)小鼠的海马CA1区植入显微内窥镜进行钙成像.我们确定了其活动与社交互动密切相关的神经元,MECP2-TG小鼠的活动模式受损。引人注目的是,我们通过在成年期使用CRISPR/Cas9方法删除人MECP2转基因,挽救了CA1的社会相关神经活动和MECP2-TG小鼠的社会缺陷.我们的数据指向负责社会互动的神经回路,并为成年期自闭症提供了潜在的治疗目标。
    Duplications of MECP2-containing genomic segments led to severe autistic symptoms in male. Transgenic mice overexpressing the human MECP2 gene exhibit autistic-like behaviors. Neural circuits underlying social defects in MECP2 transgenic (MECP2-TG) mice remain unknown. To observe neural activity of MECP2-TG mice in vivo, we performed calcium imaging by implantation of microendoscope in the hippocampal CA1 regions of MECP2-TG and wild type (WT) mice. We identified neurons whose activities were tightly associated with social interaction, which activity patterns were compromised in MECP2-TG mice. Strikingly, we rescued the social-related neural activity in CA1 and social defects in MECP2-TG mice by deleting the human MECP2 transgene using the CRISPR/Cas9 method during adulthood. Our data points to the neural circuitry responsible for social interactions and provides potential therapeutic targets for autism in adulthood.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    视交叉上核(SCN)由功能上不同的GABA能神经元亚群组成,形成负责同步哺乳动物大多数生理和行为昼夜节律的神经网络。迄今为止,关于SCN节律性的哪些方面是由单个SCN神经元产生的,知之甚少,以及网络内的神经元相互作用会产生哪些方面。这里,我们利用体内微型化显微镜来测量清醒的完整SCN中精氨酸加压素(AVP)表达神经元的荧光GCaMP报道的钙动力学,表现老鼠。我们报道SCNAVP神经元表现出周期性,我们展示的缓慢的钙波,使用体内电记录,可能反映了爆炸射击。Further,我们观察到功能的实质性异质性,因为AVP神经元表现出不稳定的节律,人口水平的节律性相对较弱。网络分析揭示了相关的细胞行为,或连贯性,在神经元对中也表现出随机节律,约有33%的对在任何时候都有节律。与单细胞变量不同,在CT/ZT6和9时,AVP神经元对之间的最大一致性时间在群体水平上表现出强烈的节律,这与整个SCN的最大神经元活动时间一致。这些结果表明,随机节律神经元之间的协调存在强大的昼夜节律变化,并且SCN中AVP神经元之间的相互作用在昼夜节律的调节中可能比单细胞活性更具影响力。此外,他们证明了这个电路中的细胞,像许多其他电路一样,在时间和空间上表现出深刻的功能异质性。
    The suprachiasmatic nucleus (SCN) is composed of functionally distinct subpopulations of GABAergic neurons which form a neural network responsible for synchronizing most physiological and behavioral circadian rhythms in mammals. To date, little is known regarding which aspects of SCN rhythmicity are generated by individual SCN neurons, and which aspects result from neuronal interaction within a network. Here, we utilize in vivo miniaturized microscopy to measure fluorescent GCaMP-reported calcium dynamics in arginine vasopressin (AVP)-expressing neurons in the intact SCN of awake, behaving mice. We report that SCN AVP neurons exhibit periodic, slow calcium waves which we demonstrate, using in vivo electrical recordings, likely reflect burst firing. Further, we observe substantial heterogeneity of function in that AVP neurons exhibit unstable rhythms, and relatively weak rhythmicity at the population level. Network analysis reveals that correlated cellular behavior, or coherence, among neuron pairs also exhibited stochastic rhythms with about 33% of pairs rhythmic at any time. Unlike single-cell variables, coherence exhibited a strong rhythm at the population level with time of maximal coherence among AVP neuronal pairs at CT/ZT 6 and 9, coinciding with the timing of maximal neuronal activity for the SCN as a whole. These results demonstrate robust circadian variation in the coordination between stochastically rhythmic neurons and that interactions between AVP neurons in the SCN may be more influential than single-cell activity in the regulation of circadian rhythms. Furthermore, they demonstrate that cells in this circuit, like those in many other circuits, exhibit profound heterogenicity of function over time and space.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    反复施加有害刺激会导致疼痛感知逐渐增加;这种时间总和在临床疼痛障碍中得到增强并可以预测。它的电生理关联是“结束,“其中背角脊髓神经元增加了对重复的伤害感受器刺激的反应。为了了解时间总和的遗传基础,我们对健康人类志愿者进行了GWAS检查,发现与编码3型钠钙交换体(NCX3)的SLC8A3显著相关.NCX3在小鼠背角神经元中表达,缺乏NCX3的小鼠表现正常,急性疼痛,但对福尔马林试验第二阶段和慢性收缩损伤过敏。缺乏NCX3的背角神经元在重复刺激后显示细胞内钙增加,钙清除率减慢,增加了发条。此外,病毒介导的NCX3增强的脊髓表达降低了中枢致敏。我们的研究强调Ca2+外排是时间总和和持续性疼痛的潜在途径,这可能适合于治疗靶向。
    Repeated application of noxious stimuli leads to a progressively increased pain perception; this temporal summation is enhanced in and predictive of clinical pain disorders. Its electrophysiological correlate is \"wind-up,\" in which dorsal horn spinal neurons increase their response to repeated nociceptor stimulation. To understand the genetic basis of temporal summation, we undertook a GWAS of wind-up in healthy human volunteers and found significant association with SLC8A3 encoding sodium-calcium exchanger type 3 (NCX3). NCX3 was expressed in mouse dorsal horn neurons, and mice lacking NCX3 showed normal, acute pain but hypersensitivity to the second phase of the formalin test and chronic constriction injury. Dorsal horn neurons lacking NCX3 showed increased intracellular calcium following repetitive stimulation, slowed calcium clearance, and increased wind-up. Moreover, virally mediated enhanced spinal expression of NCX3 reduced central sensitization. Our study highlights Ca2+ efflux as a pathway underlying temporal summation and persistent pain, which may be amenable to therapeutic targeting.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号