Carbohydrate-active enzymes

碳水化合物活性酶
  • 文章类型: Journal Article
    蛋白质和聚糖之间的相互作用对各种生物过程至关重要。随着碳水化合物相互作用蛋白的数据库和越来越多的结构数据,三边右手螺旋(RHBH)已成为聚糖相互作用的重要结构折叠。在这次审查中,我们提供了序列的概述,机械学,以及使RHBH能够与聚糖相互作用的结构特征。RHBH是真核生物中普遍存在的折叠,原核生物,以及与粘附素和碳水化合物活性酶(CAZyme)功能相关的病毒。对结构表征的含RHBH蛋白的进化轨迹分析表明,它们可能是从碳水化合物结合蛋白进化而来的,其碳水化合物降解活性后来发展。通过检测三种多糖裂解酶和三种糖苷水解酶的结构,我们提供了RHBH蛋白中聚糖结合模式的详细视图。RHBH的三维形状产生静电和空间上有利的聚糖结合表面,允许广泛的氢键相互作用,导致有利和稳定的聚糖结合。观察到RHBH是能够被环插入和电荷反转修饰以适应异质和柔性聚糖和不同反应机制的适应性结构域。了解这种普遍的蛋白质折叠可以提高我们对生物系统中聚糖结合的认识,并有助于指导糖生物学研究中含有RHBH的蛋白质的有效设计和利用。
    Interactions between proteins and glycans are critical to various biological processes. With databases of carbohydrate-interacting proteins and increasing amounts of structural data, the three-sided right-handed β-helix (RHBH) has emerged as a significant structural fold for glycan interactions. In this review, we provide an overview of the sequence, mechanistic, and structural features that enable the RHBH to interact with glycans. The RHBH is a prevalent fold that exists in eukaryotes, prokaryotes, and viruses associated with adhesin and carbohydrate-active enzyme (CAZyme) functions. An evolutionary trajectory analysis on structurally characterized RHBH-containing proteins shows that they likely evolved from carbohydrate-binding proteins with their carbohydrate-degrading activities evolving later. By examining three polysaccharide lyase and three glycoside hydrolase structures, we provide a detailed view of the modes of glycan binding in RHBH proteins. The 3-dimensional shape of the RHBH creates an electrostatically and spatially favorable glycan binding surface that allows for extensive hydrogen bonding interactions, leading to favorable and stable glycan binding. The RHBH is observed to be an adaptable domain capable of being modified with loop insertions and charge inversions to accommodate heterogeneous and flexible glycans and diverse reaction mechanisms. Understanding this prevalent protein fold can advance our knowledge of glycan binding in biological systems and help guide the efficient design and utilization of RHBH-containing proteins in glycobiology research.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:微生物膨胀蛋白(EXLXs)是与参与植物细胞壁形成的植物膨胀蛋白同源的非裂解蛋白。由于其非裂解细胞壁松动特性和潜在的解聚纤维素结构,人们对探索微生物膨胀蛋白(EXLX)协助纤维素生物质加工以用于更广泛的生物技术应用的能力有相当大的兴趣。在这里,在结合纤维素的能力方面,比较了具有不同模块化结构和不同系统发育起源的EXLX,纤维素,和几丁质底物,在结构上修饰纤维素原纤维,并促进硬木纸浆的酶解构。
    结果:五种异源生产的EXLXs(密根氏杆菌;CmiEXLX2,水牙树;DaqEXLX1,糖质黄单胞菌;XsaEXLX1,无植物。;NspEXLX1和疫霉;PcaEXLX1)被证明在pH5.5时与木聚糖和硬木纸浆结合,CmiEXLX2(带有2家族碳水化合物结合模块)也与结晶纤维素结合良好。小角度X射线散射显示,用CmiEXLX2,DaqEXLX1或NspEXLX1处理后,相邻纤维素微纤丝之间的纤丝间距离增加了20-25%。相应地,将木聚糖酶与CmiEXLX2和DaqEXLX1相结合,可将硬木纸浆的产品产量提高约25%,在用CmiEXLX2、DaqEXLX1和NspEXLX1补充来自里氏木霉的TrAA9ALPMO的同时,产品总收率提高了35%以上。
    结论:这种不同EXLXs的直接比较揭示了对纤维素微纤维的原纤间距和预测作用于纤维表面的碳水化合物活性酶的性能的一致影响。这些发现揭示了使用EXLXs从纤维素生物质创建增值材料的新可能性。
    BACKGROUND: Microbial expansins (EXLXs) are non-lytic proteins homologous to plant expansins involved in plant cell wall formation. Due to their non-lytic cell wall loosening properties and potential to disaggregate cellulosic structures, there is considerable interest in exploring the ability of microbial expansins (EXLX) to assist the processing of cellulosic biomass for broader biotechnological applications. Herein, EXLXs with different modular structure and from diverse phylogenetic origin were compared in terms of ability to bind cellulosic, xylosic, and chitinous substrates, to structurally modify cellulosic fibrils, and to boost enzymatic deconstruction of hardwood pulp.
    RESULTS: Five heterogeneously produced EXLXs (Clavibacter michiganensis; CmiEXLX2, Dickeya aquatica; DaqEXLX1, Xanthomonas sacchari; XsaEXLX1, Nothophytophthora sp.; NspEXLX1 and Phytophthora cactorum; PcaEXLX1) were shown to bind xylan and hardwood pulp at pH 5.5 and CmiEXLX2 (harboring a family-2 carbohydrate-binding module) also bound well to crystalline cellulose. Small-angle X-ray scattering revealed a 20-25% increase in interfibrillar distance between neighboring cellulose microfibrils following treatment with CmiEXLX2, DaqEXLX1, or NspEXLX1. Correspondingly, combining xylanase with CmiEXLX2 and DaqEXLX1 increased product yield from hardwood pulp by ~ 25%, while supplementing the TrAA9A LPMO from Trichoderma reesei with CmiEXLX2, DaqEXLX1, and NspEXLX1 increased total product yield by over 35%.
    CONCLUSIONS: This direct comparison of diverse EXLXs revealed consistent impacts on interfibrillar spacing of cellulose microfibers and performance of carbohydrate-active enzymes predicted to act on fiber surfaces. These findings uncover new possibilities to employ EXLXs in the creation of value-added materials from cellulosic biomass.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    纤维素是地球上最丰富的可再生生物资源,纤维素的生物降解和利用将有助于全球环境的可持续发展。孢子虫是土壤中常见的好氧纤维素降解菌,它可以粘附在纤维素基质的表面,并通过滑动运动。在这项研究中,孢子藻的差异转录组分析。进行CX11并鉴定了总共4,217个差异表达的基因(DEG)。基因本体富集成果显示,注解DEGs中存在三个与纤维素降解机能有关的GO范畴。总共177个DEGs被鉴定为编码碳水化合物活性酶(CAZymes)的基因,其中54个显著上调的CAZymes主要是纤维素酶,半纤维素酶,果胶酶,等。筛选了39个DEGs与滑翔功能相关。为了探索可能与纤维素代谢相关的未注释基因,使用短时序列表达式挖掘算法(STEM)进行聚类分析。预计有281个未注释的基因与纤维素降解的初始中期相关,而289个未注释的基因可能在纤维素降解的中后期起作用。Spocytophagasp.CX11可以产生胞外内切木聚糖酶,内切葡聚糖酶,FPase和β-葡萄糖苷酶,分别,根据不同的碳源条件。总之,这项研究为Sporocytophagasp的转录组信息提供了有价值的见解。这将有助于探索CX11在纤维素资源的生物降解和利用中的应用。
    Cellulose is the most abundant renewable bioresources on earth, and the biodegradation and utilization of cellulose would contribute to the sustainable development of global environment. Sporocytophaga species are common aerobic cellulose-degrading bacteria in soil, which can adhere to the surface of cellulose matrix and motile by gliding. In this study, a differential transcriptome analysis of Sporocytophaga sp. CX11 was performed and a total of 4,217 differentially expressed genes (DEGs) were identified. Gene Ontology enrichment results showed that there are three GO categories related to cellulose degradation function among the annotated DEGs. A total of 177 DEGs were identified as genes encoding carbohydrate-active enzymes (CAZymes), among which 54 significantly upregulated CAZymes were mainly cellulases, hemicellulases, pectinases, etc. 39 DEGs were screened to associate with gliding function. In order to explore unannotated genes potentially related to cellulose metabolism, cluster analysis was performed using the Short-Time Series Expression Miner algorithm (STEM). 281 unannotated genes were predicted to be associated with the initial-middle stage of cellulose degradation and 289 unannotated genes might function in the middle-last stage of cellulose degradation. Sporocytophaga sp. CX11 could produce extracellular endo-xylanase, endo-glucanase, FPase and β-glucosidase, respectively, according to different carbon source conditions. Altogether, this study provides valuable insights into the transcriptome information of Sporocytophaga sp. CX11, which would be useful to explore its application in biodegradation and utilization of cellulose resources.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    Teredinibacterturnerae是一种可培养的纤维素分解γ-proproeteobacterium(Cellvibrionaceae),通常作为细胞内共生体存在于Teredinidae家族的食木双壳类动物的the中。T.turnerae的基因组编码广泛的解构纤维素的酶,半纤维素,和果胶,并有助于木素纤维素的消化。然而,共生体产生的酶由T.turnerae分泌并随后转运到木素纤维素消化部位的机制尚未完全了解。这里,我们表明,在羧甲基纤维素(CMC)上生长的T.turnerae培养物产生外膜囊泡(OMVs),其中含有多种通过LC-MS/MS鉴定为碳水化合物活性酶的蛋白质,具有预测的抗纤维素活性。半纤维素,还有果胶.还原糖测定和酶谱证实这些OMV保留了纤维素分解活性,如CMC的水解所证明的。此外,这些OMV富含TonB依赖性受体,这对自由生活的细菌获得碳水化合物和铁至关重要。这些观察结果表明OMV在自由生活状态下T.turnerae木质纤维素利用中的潜在作用,在共生关联过程中的酶转运和宿主相互作用中,以及在商业应用如木质纤维素生物质转化中。
    Teredinibacter turnerae is a cultivable cellulolytic Gammaproeteobacterium (Cellvibrionaceae) that commonly occurs as an intracellular endosymbiont in the gills of wood-eating bivalves of the family Teredinidae (shipworms). The genome of T. turnerae encodes a broad range of enzymes that deconstruct cellulose, hemicellulose, and pectin and contribute to lignocellulose digestion in the shipworm gut. However, the mechanism by which symbiont-made enzymes are secreted by T. turnerae and subsequently transported to the site of lignocellulose digestion in the shipworm gut is incompletely understood. Here, we show that T. turnerae cultures grown on carboxymethyl cellulose (CMC) produce outer membrane vesicles (OMVs) that contain a variety of proteins identified by LC-MS/MS as carbohydrate-active enzymes with predicted activities against cellulose, hemicellulose, and pectin. Reducing sugar assays and zymography confirm that these OMVs retain cellulolytic activity, as evidenced by hydrolysis of CMC. Additionally, these OMVs were enriched with TonB-dependent receptors, which are essential to carbohydrate and iron acquisition by free-living bacteria. These observations suggest potential roles for OMVs in lignocellulose utilization by T. turnerae in the free-living state, in enzyme transport and host interaction during symbiotic association, and in commercial applications such as lignocellulosic biomass conversion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Published Erratum
    [这修正了文章DOI:10.3389/fmicb.2023.1294854。].
    [This corrects the article DOI: 10.3389/fmicb.2023.1294854.].
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    博维亚芽孢杆菌是一种野生食用外生菌根真菌,具有重要的经济和生态价值,通常与松树形成外生菌根。我们对与鲍维纳斯的代谢和共生相关的机制及其对营养价值的影响知之甚少。在这项研究中,使用Illumina对S.bovinus进行了全基因组测序,HiFi,和Hi-C技术,测序数据进行基因组组装,基因预测,和功能注释,以获得高质量的染色体水平基因组。牛链球菌基因组的最终组装包括12条染色体,总长度为43.03Mb,GC含量为46.58%,重叠群N50大小为3.78Mb。从基因组注释预测了总共11,199个编码蛋白质序列。S.bovinus基因组包含大量的小分泌蛋白(SSP)和编码与碳水化合物相关的酶的基因,以及与萜类化合物相关的基因,生长素,和脂壳寡糖。这些基因可能有助于共生过程。全基因组测序和遗传信息为更深入地理解鲍氏菌根共生机制提供了理论基础,可为外生菌根真菌的比较基因组学研究提供参考。
    Suillus bovinus is a wild edible ectomycorrhizal fungus with important economic and ecological value, which often forms an ectomycorrhiza with pine trees. We know little about the mechanisms associated with the metabolism and symbiosis of S. bovinus and its effects on the nutritional value. In this study, the whole-genome sequencing of S. bovinus was performed using Illumina, HiFi, and Hi-C technologies, and the sequencing data were subjected to genome assembly, gene prediction, and functional annotation to obtain a high-quality chromosome-level genome of S. bovinus. The final assembly of the S. bovinus genome includes 12 chromosomes, with a total length of 43.03 Mb, a GC content of 46.58%, and a contig N50 size of 3.78 Mb. A total of 11,199 coding protein sequences were predicted from genome annotation. The S. bovinus genome contains a large number of small secreted proteins (SSPs) and genes that encode enzymes related to carbohydrates, as well as genes related to terpenoids, auxin, and lipochitooligosaccharides. These genes may contribute to symbiotic processes. The whole-genome sequencing and genetic information provide a theoretical basis for a deeper understanding of the mechanism of the mycorrhizal symbiosis of S. bovinus and can serve as a reference for comparative genomics of ectomycorrhizal fungi.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    白腐真菌使用分泌的碳水化合物活性酶(CAZymes)以及活性氧(ROS),像过氧化氢(H2O2),降解木材中的木质纤维素。H2O2在初始衰变阶段充当关键氧化还原酶的共底物。虽然CAZymes对木质纤维素的降解是有据可查的,ROS对分泌蛋白氧化的影响尚不清楚,氧化蛋白的身份是未知的。甲硫氨酸(Met)可以被氧化成Met亚砜(MetO)或Met砜(MetO2),抗氧化剂,或调节作用。其他残留物,像脯氨酸(Pro),可以进行羰基化。用白杨木上生长的白腐朱砂,我们结合H218O2和深度鸟枪蛋白质组学分析了分泌蛋白的Met含量及其对氧化的敏感性。引人注目的是,与细胞内蛋白质(2.1%)相比,它们的整体Met含量显着降低(1.4%),在真菌中但在后生动物或植物中不保守的特征。我们证明了过氧化氢酶,广泛存在于白腐真菌中,保护分泌的蛋白质免受氧化。我们的氧化还原蛋白质组学方法允许在少数分泌蛋白质中鉴定49个可氧化的Met和40个可氧化的Pro残基。主要是CAZymes。有趣的是,他们中的许多人在热点地区有几个氧化残留物。有些人遇到了,包括GH7纤维二糖水解酶,被氧化高达47%,有相当比例的砜(13%)。这些Met在真菌同源物中是保守的,建议重要的功能角色。我们的发现表明,白腐真菌通过最大程度地减少其Met含量,清除ROS和精确定位CAZymes中的氧化还原活性残基来保护其分泌的蛋白质。重要意义真菌降解木质纤维素的研究对于了解木材腐烂的生态和工业影响至关重要。虽然碳水化合物活性酶(CAZymes)在木质纤维素降解中起着公认的作用,过氧化氢(H2O2)对分泌蛋白的影响尚不清楚。本研究旨在评估H2O2对分泌蛋白的影响,专注于蛋氨酸的氧化(Met)。使用白杨木上生长的白腐真菌Pycnoporuscinnabarinus模型,我们表明,真菌通过减少其Met含量并利用分泌的过氧化氢酶清除外源H2O2来保护其分泌的蛋白质免受氧化。研究确定了分泌的CAZymes中关键的可氧化Met。重要的是,一些Met,像GH7纤维二糖水解酶一样,经历了大量的氧化水平,表明在木质纤维素降解中的重要作用。这些发现突出了白腐真菌在木材腐烂过程中保护其分泌蛋白的适应性机制,并强调了这些过程在木质纤维素分解中的重要性。
    White-rot fungi employ secreted carbohydrate-active enzymes (CAZymes) along with reactive oxygen species (ROS), like hydrogen peroxide (H2O2), to degrade lignocellulose in wood. H2O2 serves as a co-substrate for key oxidoreductases during the initial decay phase. While the degradation of lignocellulose by CAZymes is well documented, the impact of ROS on the oxidation of the secreted proteins remains unclear, and the identity of the oxidized proteins is unknown. Methionine (Met) can be oxidized to Met sulfoxide (MetO) or Met sulfone (MetO2) with potential deleterious, antioxidant, or regulatory effects. Other residues, like proline (Pro), can undergo carbonylation. Using the white-rot Pycnoporus cinnabarinus grown on aspen wood, we analyzed the Met content of the secreted proteins and their susceptibility to oxidation combining H218O2 with deep shotgun proteomics. Strikingly, their overall Met content was significantly lower (1.4%) compared to intracellular proteins (2.1%), a feature conserved in fungi but not in metazoans or plants. We evidenced that a catalase, widespread in white-rot fungi, protects the secreted proteins from oxidation. Our redox proteomics approach allowed the identification of 49 oxidizable Met and 40 oxidizable Pro residues within few secreted proteins, mostly CAZymes. Interestingly, many of them had several oxidized residues localized in hotspots. Some Met, including those in GH7 cellobiohydrolases, were oxidized up to 47%, with a substantial percentage of sulfone (13%). These Met are conserved in fungal homologs, suggesting important functional roles. Our findings reveal that white-rot fungi safeguard their secreted proteins by minimizing their Met content and by scavenging ROS and pinpoint redox-active residues in CAZymes.IMPORTANCEThe study of lignocellulose degradation by fungi is critical for understanding the ecological and industrial implications of wood decay. While carbohydrate-active enzymes (CAZymes) play a well-established role in lignocellulose degradation, the impact of hydrogen peroxide (H2O2) on secreted proteins remains unclear. This study aims at evaluating the effect of H2O2 on secreted proteins, focusing on the oxidation of methionine (Met). Using the model white-rot fungi Pycnoporus cinnabarinus grown on aspen wood, we showed that fungi protect their secreted proteins from oxidation by reducing their Met content and utilizing a secreted catalase to scavenge exogenous H2O2. The research identified key oxidizable Met within secreted CAZymes. Importantly, some Met, like those of GH7 cellobiohydrolases, undergone substantial oxidation levels suggesting important roles in lignocellulose degradation. These findings highlight the adaptive mechanisms employed by white-rot fungi to safeguard their secreted proteins during wood decay and emphasize the importance of these processes in lignocellulose breakdown.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    三黄porus,在中国也被称为“桑黄”,是著名的中药大型真菌属。为了更有效地利用三黄孢菌资源,在本研究中,我们完成了S.weigelae单核菌株的第一个基因组组装和注释。一个33.96-Mb基因组序列被组装为13个重叠群,导致9377个蛋白质编码基因的预测。系统发育和平均核苷酸同一性分析表明,在进化树中,WeigelaeS.聚集在一个分支中。共线性分析显示Weigelae与鲍氏链球菌具有高度共线性,S.Vaninii,还有S.sanghang.可能涉及药用特性的生物合成途径,包括萜类和多糖的合成,在S.Weigelae中被发现,虽然多糖被确定为S.weigelae的主要药用代谢产物,黄酮类化合物比其他药用蘑菇组更重要。在S.weigelae基因组中鉴定出编码332种碳水化合物活性酶的基因,包括预测的主要糖苷水解酶和糖基转移酶,揭示了S.weigelae强大的木质纤维素降解能力。Further,130个基因,在S.weigelae基因组中编码细胞色素P450的七类注释。总的来说,我们的研究结果揭示了S.weigelae的显着药用能力,并提供了新的见解,将为S.weigelae的进化和药用应用研究提供信息。这些数据是制定科学合理的三黄孢菌生态保护政策的参考资源。
    Sanghuangporus, also known as \"Sanghuang\" in China, is a well-known genus of traditional Chinese medicinal macrofungi. To make more effective use of Sanghuangporus resources, we completed the first genome assembly and annotation of a monokaryon strain of S. weigelae in the present study. A 33.96-Mb genome sequence was assembled as 13 contigs, leading to prediction of 9377 protein-coding genes. Phylogenetic and average nucleotide identity analyses indicated that the S. weigelae genome is closely related to those of other Sanghuangporus species in evolutionary tree, which clustered in one clade. Collinearity analysis revealed a high level of collinearity of S. weigelae with S. baumii, S. vaninii, and S. sanghuang. Biosynthesis pathways potentially involved in medicinal properties, including terpenoid and polysaccharide synthesis, were identified in S. weigelae, while polysaccharides were identified as the main medicinal metabolites in S. weigelae, with flavonoids more important in Sanghuangporus than other medicinal mushroom groups. Genes encoding 332 carbohydrate-active enzymes were identified in the S. weigelae genome, including major glycoside hydrolases and glycosyltransferases predicted, revealing the robust lignocellulose degradation capacity of S. weigelae. Further, 130 genes, clustered in seven classes were annotated to encode cytochromes P450 in the S. weigelae genome. Overall, our results reveal the remarkably medicinal capacity of S. weigelae and provide new insights that will inform the study of evolution and medicinal application of S. weigelae. The data are a reference resource for the formulation of scientific and rational ecological protection policies for Sanghuangporus species.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    粘细菌具有复杂的生命周期和独特的社会行为,并通过捕食土壤中的细菌和真菌来获取养分。几丁质酶,粘细菌产生的β-1,3葡聚糖酶和β-1,6葡聚糖酶可以降解某些植物病原真菌细胞壁的糖苷键,导致细胞壁中的穿孔结构。此外,粘细菌产生的异辛醇可导致某些病原真菌细胞内活性氧的积累,并诱导细胞凋亡。粘细菌还可以通过β-1,3葡聚糖酶穿透某些植物病原卵菌的细胞壁,降低细胞内可溶性蛋白的含量和保护酶的活性,影响卵菌细胞膜的通透性,并加重病原细胞的氧化毁伤。粘细菌产生的邻苯二甲酸二异丁酯、粘蛋白等小分子化合物可抑制细菌生物膜和脂蛋白的形成,和囊虫毒素可以抑制DNA促旋酶的活性,从而改变细菌细胞膜的通透性。粘细菌,作为一种新的天然复合资源库,可以控制植物病原真菌,卵菌和细菌通过产生碳水化合物活性酶和小分子化合物,所以它在植物病害防治方面有很大的潜力。
    Myxobacteria have a complex life cycle and unique social behavior, and obtain nutrients by preying on bacteria and fungi in soil. Chitinase, β-1,3 glucanase and β-1,6 glucanase produced by myxobacteria can degrade the glycosidic bond of cell wall of some plant pathogenic fungi, resulting in a perforated structure in the cell wall. In addition, isooctanol produced by myxobacteria can lead to the accumulation of intracellular reactive oxygen species in some pathogenic fungi and induce cell apoptosis. Myxobacteria can also perforate the cell wall of some plant pathogenic oomycetes by β-1,3 glucanase, reduce the content of intracellular soluble protein and protective enzyme activity, affect the permeability of oomycete cell membrane, and aggravate the oxidative damage of pathogen cells. Small molecule compounds such as diisobutyl phthalate and myxovirescin produced by myxobacteria can inhibit the formation of biofilm and lipoprotein of bacteria, and cystobactamids can inhibit the activity of DNA gyrase, thus changing the permeability of bacterial cell membrane. Myxobacteria, as a new natural compound resource bank, can control plant pathogenic fungi, oomycetes and bacteria by producing carbohydrate active enzymes and small molecular compounds, so it has great potential in plant disease control.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    木质纤维素生物质(LCB),包括用过的蘑菇基质(SMS),如果管理不当,会带来环境挑战。同时,这些可再生资源具有巨大的生物燃料和化学品生产潜力。随着蘑菇市场的增长预计会放大短信数量,重新利用或处置策略至关重要。这项研究探讨了使用SMS培养微生物群落以生产碳水化合物活性酶(CAZymes)。解决使用厌氧消化器富集以SMS为食的微生物群落的研究空白,这项研究调查了不同温度(37°C,50°C,和70°C)和底物(SMS以及纯羧甲基纤维素,和木聚糖)。富集的微生物群显示了对纤维素的温度依赖性偏好,半纤维素,和木质素降解,由热和元素分析支持。酶测定证实了木质纤维素分解酶的分泌与底物降解趋势相关。值得注意的是,热重分析(TGA),结合差示扫描量热法(TGA-DSC),作为糖化潜力测定LCB的快速方法而出现。与商业酶相比,在嗜温温度下分离的微生物群分泌的嗜热半纤维素酶表现出强大的稳定性和优异的酶活性,与生物炼制条件保持一致。PCR-DGGE和宏基因组分析显示了基于环境条件的微生物组组成和功能潜力的动态变化。影响CAZYME的丰度和多样性。元功能分析强调了CAZymes在生物量转化中的作用,指示微生物降解木质纤维素的策略。温度和底物特异性影响降解潜力,强调环境-微生物相互作用的复杂性。这项研究证明了温度驱动的微生物选择用于木质纤维素降解,揭示具有工业前景的嗜热木聚糖酶。获得的见解有助于优化酶的生产和制定有效的生物质转化策略。了解微生物对温度和底物变化的反应阐明了生物转化动力学,强调利用其生物技术潜力的量身定制的策略。
    Lignocellulose biomasses (LCB), including spent mushroom substrate (SMS), pose environmental challenges if not properly managed. At the same time, these renewable resources hold immense potential for biofuel and chemicals production. With the mushroom market growth expected to amplify SMS quantities, repurposing or disposal strategies are critical. This study explores the use of SMS for cultivating microbial communities to produce carbohydrate-active enzymes (CAZymes). Addressing a research gap in using anaerobic digesters for enriching microbiomes feeding on SMS, this study investigates microbial diversity and secreted CAZymes under varied temperatures (37 °C, 50 °C, and 70 °C) and substrates (SMS as well as pure carboxymethylcellulose, and xylan). Enriched microbiomes demonstrated temperature-dependent preferences for cellulose, hemicellulose, and lignin degradation, supported by thermal and elemental analyses. Enzyme assays confirmed lignocellulolytic enzyme secretion correlating with substrate degradation trends. Notably, thermogravimetric analysis (TGA), coupled with differential scanning calorimetry (TGA-DSC), emerged as a rapid approach for saccharification potential determination of LCB. Microbiomes isolated at mesophilic temperature secreted thermophilic hemicellulases exhibiting robust stability and superior enzymatic activity compared to commercial enzymes, aligning with biorefinery conditions. PCR-DGGE and metagenomic analyses showcased dynamic shifts in microbiome composition and functional potential based on environmental conditions, impacting CAZyme abundance and diversity. The meta-functional analysis emphasised the role of CAZymes in biomass transformation, indicating microbial strategies for lignocellulose degradation. Temperature and substrate specificity influenced the degradative potential, highlighting the complexity of environmental-microbial interactions. This study demonstrates a temperature-driven microbial selection for lignocellulose degradation, unveiling thermophilic xylanases with industrial promise. Insights gained contribute to optimizing enzyme production and formulating efficient biomass conversion strategies. Understanding microbial consortia responses to temperature and substrate variations elucidates bioconversion dynamics, emphasizing tailored strategies for harnessing their biotechnological potential.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号