关键词: biomass conversion biorefineries carbohydrate-active enzymes metagenomic analyses microbial diversity microbiome dynamics microbiomes spent mushroom substrate thermal analysis total carbohydrate analysis

Mesh : Microbial Consortia Biofuels Microbiota Substrate Specificity Agaricales Bacteria / genetics

来  源:   DOI:10.3390/ijms25021090   PDF(Pubmed)

Abstract:
Lignocellulose biomasses (LCB), including spent mushroom substrate (SMS), pose environmental challenges if not properly managed. At the same time, these renewable resources hold immense potential for biofuel and chemicals production. With the mushroom market growth expected to amplify SMS quantities, repurposing or disposal strategies are critical. This study explores the use of SMS for cultivating microbial communities to produce carbohydrate-active enzymes (CAZymes). Addressing a research gap in using anaerobic digesters for enriching microbiomes feeding on SMS, this study investigates microbial diversity and secreted CAZymes under varied temperatures (37 °C, 50 °C, and 70 °C) and substrates (SMS as well as pure carboxymethylcellulose, and xylan). Enriched microbiomes demonstrated temperature-dependent preferences for cellulose, hemicellulose, and lignin degradation, supported by thermal and elemental analyses. Enzyme assays confirmed lignocellulolytic enzyme secretion correlating with substrate degradation trends. Notably, thermogravimetric analysis (TGA), coupled with differential scanning calorimetry (TGA-DSC), emerged as a rapid approach for saccharification potential determination of LCB. Microbiomes isolated at mesophilic temperature secreted thermophilic hemicellulases exhibiting robust stability and superior enzymatic activity compared to commercial enzymes, aligning with biorefinery conditions. PCR-DGGE and metagenomic analyses showcased dynamic shifts in microbiome composition and functional potential based on environmental conditions, impacting CAZyme abundance and diversity. The meta-functional analysis emphasised the role of CAZymes in biomass transformation, indicating microbial strategies for lignocellulose degradation. Temperature and substrate specificity influenced the degradative potential, highlighting the complexity of environmental-microbial interactions. This study demonstrates a temperature-driven microbial selection for lignocellulose degradation, unveiling thermophilic xylanases with industrial promise. Insights gained contribute to optimizing enzyme production and formulating efficient biomass conversion strategies. Understanding microbial consortia responses to temperature and substrate variations elucidates bioconversion dynamics, emphasizing tailored strategies for harnessing their biotechnological potential.
摘要:
木质纤维素生物质(LCB),包括用过的蘑菇基质(SMS),如果管理不当,会带来环境挑战。同时,这些可再生资源具有巨大的生物燃料和化学品生产潜力。随着蘑菇市场的增长预计会放大短信数量,重新利用或处置策略至关重要。这项研究探讨了使用SMS培养微生物群落以生产碳水化合物活性酶(CAZymes)。解决使用厌氧消化器富集以SMS为食的微生物群落的研究空白,这项研究调查了不同温度(37°C,50°C,和70°C)和底物(SMS以及纯羧甲基纤维素,和木聚糖)。富集的微生物群显示了对纤维素的温度依赖性偏好,半纤维素,和木质素降解,由热和元素分析支持。酶测定证实了木质纤维素分解酶的分泌与底物降解趋势相关。值得注意的是,热重分析(TGA),结合差示扫描量热法(TGA-DSC),作为糖化潜力测定LCB的快速方法而出现。与商业酶相比,在嗜温温度下分离的微生物群分泌的嗜热半纤维素酶表现出强大的稳定性和优异的酶活性,与生物炼制条件保持一致。PCR-DGGE和宏基因组分析显示了基于环境条件的微生物组组成和功能潜力的动态变化。影响CAZYME的丰度和多样性。元功能分析强调了CAZymes在生物量转化中的作用,指示微生物降解木质纤维素的策略。温度和底物特异性影响降解潜力,强调环境-微生物相互作用的复杂性。这项研究证明了温度驱动的微生物选择用于木质纤维素降解,揭示具有工业前景的嗜热木聚糖酶。获得的见解有助于优化酶的生产和制定有效的生物质转化策略。了解微生物对温度和底物变化的反应阐明了生物转化动力学,强调利用其生物技术潜力的量身定制的策略。
公众号