Beauveria

白僵菌
  • 文章类型: Journal Article
    Eaf6蛋白,酵母和人类MOZ/MORF复合物中NuA4和NuA3复合物的保守成分,在转录激活中起着至关重要的作用,基因调控,和细胞周期控制。尽管它在其他生物体中具有重要意义,Eaf6在昆虫病原真菌(EPF)中的功能作用仍未被探索。这里,我们研究了Eaf6同源物在昆虫病原真菌球孢白僵菌中的功能。我们证明BbEaf6主要位于细胞核中,与其他真菌类似。BbEaf6的删除导致延迟的分生孢子,分生孢子产量降低,并改变了分生孢子的性质。转录组学分析显示,ΔBbEaf6突变体中涉及无性发育和细胞周期进程的基因失调。此外,ΔBbEaf6突变体对各种胁迫的耐受性降低,包括离子应力,细胞壁扰动,和DNA损伤压力。值得注意的是,ΔBbEaf6突变体在昆虫生物测定中显示出减弱的毒力,伴随着与角质层渗透和血球感染相关的基因失调。总的来说,我们的研究阐明了BbEaf6在应激反应中的多方面作用,发展,和B.bassiana的毒力,为控制真菌发病机理的分子机制和害虫管理策略的潜在目标提供有价值的见解。
    The Eaf6 protein, a conserved component of the NuA4 and NuA3 complexes in yeast and MOZ/MORF complexes in humans, plays crucial roles in transcriptional activation, gene regulation, and cell cycle control. Despite its significance in other organisms, the functional role of Eaf6 in entomopathogenic fungi (EPF) remained unexplored. Here, we investigate the function of BbEaf6, the Eaf6 homolog in the entomopathogenic fungus Beauveria bassiana. We demonstrate that BbEaf6 is predominantly localized in nuclei, similar to its counterpart in other fungi. Deletion of BbEaf6 resulted in delayed conidiation, reduced conidial yield, and altered conidial properties. Transcriptomic analysis revealed dysregulation of the genes involved in asexual development and cell cycle progression in the ΔBbEaf6 mutant. Furthermore, the ΔBbEaf6 mutant exhibited decreased tolerance to various stresses, including ionic stress, cell wall perturbation, and DNA damage stress. Notably, the ΔBbEaf6 mutant displayed attenuated virulence in insect bioassays, accompanied by dysregulation of genes associated with cuticle penetration and haemocoel infection. Overall, our study elucidates the multifaceted role of BbEaf6 in stress response, development, and virulence in B. bassiana, providing valuable insights into the molecular mechanisms governing fungal pathogenesis and potential targets for pest management strategies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:增强作物的抗旱性对于维持生产力水平是必要的。植物与白僵菌等微生物协同作用以提高耐旱性。因此,当前的研究调查了用白杨进行生物测定对在常规灌溉下生长的Malvaparviflora植物的耐旱性的影响(90%的持水能力(WHC)),轻度(60%WHC),和严重干旱胁迫(30%WHC)。
    结果:结果表明,干旱胁迫降低了小草的生长和生理属性。然而,那些用球孢芽孢杆菌进行生物处理的动物表现出更高的耐旱性和增强的生长,生理,生化指标:干旱胁迫富集丙二醛和H2O2含量。相反,在严重的干旱胁迫下,暴露于白孢芽孢杆菌减少了胁迫标记,并显着增加了脯氨酸和抗坏血酸的含量;它增强了赤霉素并降低了乙烯。BioprimedM.parviflora,在干旱条件下,改善抗氧化酶活性和植物的营养状况。此外,十个简单序列重复引物在处理之间检测到25%的遗传变异。基因组DNA模板稳定性(GTS)略有下降,在响应干旱胁迫时更为明显;然而,对于干旱胁迫的植物,用B.bassiana进行的生物测定保留了GTS。
    结论:在干旱条件下,与球根芽孢杆菌的生物测定提高了马尔瓦的生长和营养价值。这可以减弱光合改变,上调次级代谢产物,激活抗氧化系统,并保持基因组的完整性。
    BACKGROUND: Enhancing crops\' drought resilience is necessary to maintain productivity levels. Plants interact synergistically with microorganisms like Beauveria bassiana to improve drought tolerance. Therefore, the current study investigates the effects of biopriming with B. bassiana on drought tolerance in Malva parviflora plants grown under regular irrigation (90% water holding capacity (WHC)), mild (60% WHC), and severe drought stress (30% WHC).
    RESULTS: The results showed that drought stress reduced the growth and physiological attributes of M. parviflora. However, those bioprimed with B. bassiana showed higher drought tolerance and enhanced growth, physiological, and biochemical parameters: drought stress enriched malondialdehyde and H2O2 contents. Conversely, exposure to B. bassiana reduced stress markers and significantly increased proline and ascorbic acid content under severe drought stress; it enhanced gibberellic acid and reduced ethylene. Bioprimed M. parviflora, under drought conditions, improved antioxidant enzymatic activity and the plant\'s nutritional status. Besides, ten Inter-Simple Sequence Repeat primers detected a 25% genetic variation between treatments. Genomic DNA template stability (GTS) decreased slightly and was more noticeable in response to drought stress; however, for drought-stressed plants, biopriming with B. bassiana retained the GTS.
    CONCLUSIONS: Under drought conditions, biopriming with B. bassiana enhanced Malva\'s growth and nutritional value. This could attenuate photosynthetic alterations, up-regulate secondary metabolites, activate the antioxidant system, and maintain genome integrity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    本研究旨在分离和鉴定球孢白僵菌的本地菌株,编码为Bv065,展示了其作为针对棕榈象鼻虫Dynamisborassi的生物防治剂的潜力。源自哥伦比亚西南部自然感染的D.borassi标本,该真菌经过分子鉴定,被鉴定为B.bassiana,与已知参考菌株表现出高序列相似性。生理表征显示Bv065在25至30°C的温度范围和6至9的pH范围内蓬勃发展。此外,通过代谢谱分析确定了允许菌株最佳生长的关键碳源,包括蔗糖,D-甘露糖,和γ-氨基丁酸。这些发现为可扩展性和制定方法提供了战略见解。此外,酶分析揭示了Bv065中强大的蛋白酶活性,对催化昆虫角质层降解和促进宿主渗透至关重要,从而增强了其昆虫致病的潜力。随后的评估暴露了Bv065对D.borassi的致病性,在暴露后九天内导致大量死亡,尽管对Rhynchophoruspalmarum的效果有限。这项研究强调了了解最佳生长条件和代谢偏好的重要性。研究结果表明,Bv065是新热带地区害虫综合管理策略的有希望的候选者,特别是用于控制椰子和桃树栽培中的棕榈象鼻虫侵染。未来的研究途径包括精炼大规模生产方法,制定新颖的输送系统,并进行全面的田间功效试验,以释放Bv065在促进可持续虫害管理实践中的全部潜力。总的来说,这项研究有助于对昆虫病原真菌及其在生物防治中的关键作用的知识不断增长,为传统杀虫干预措施的生态友好替代品提供细致入微的观点。
    This study aimed to isolate and characterize a native strain of Beauveria bassiana, coded as Bv065, showcasing its potential as a biological control agent targeting the palm weevil Dynamis borassi. Originating from a naturally infected D. borassi specimen collected in southwestern Colombia, the fungus underwent molecular identification and was identified as B. bassiana, exhibiting high sequence similarity with known reference strains. The physiological characterization revealed that Bv065 thrived within a temperature range of 25 to 30 °C and a pH range of 6 to 9. Moreover, the key carbon sources that allow optimal growth of the strain were identified through metabolic profiling, including sucrose, D-mannose, and γ-amino-butyric acid. These findings offer strategic insights for scalability and formulation methodologies. Additionally, enzymatic analyses unveiled robust protease activity within Bv065, crucial for catalysing insect cuticle degradation and facilitating host penetration, thus accentuating its entomopathogenic potential. Subsequent evaluations exposed Bv065\'s pathogenicity against D. borassi, causing significant mortality within nine days of exposure, albeit exhibiting limited effectiveness against Rhynchophorus palmarum. This study underscores the importance of understanding optimal growth conditions and metabolic preferences of B. bassiana strains for developing effective biopesticides. The findings suggest Bv065 as a promising candidate for integrated pest management strategies in neotropical regions, particularly for controlling palm weevil infestations in coconut and peach palm cultivation. Future research avenues include refining mass production methodologies, formulating novel delivery systems, and conducting comprehensive field efficacy trials to unlock the full potential of Bv065 in fostering sustainable pest management practices. Overall, this study contributes to the growing body of knowledge on entomopathogenic fungi and their pivotal role in biological control, offering nuanced perspectives on eco-friendly alternatives to conventional insecticidal interventions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    温室粉虱(Trialeurodesaverariorum)是一种主要的全球性害虫,对植物造成直接损害并传播病毒性植物病害。由于广泛的农药耐药性,水痘的管理存在问题,许多温室种植者依靠生物防治剂来调节T.exapariorum种群。然而,这些通常是缓慢的,功效各不相同,当害虫种群超过阈值水平时,导致随后使用化学杀虫剂。化学和生物农药的结合具有巨大的潜力,但可能会导致不同的结果,从积极到消极的互动。在这项研究中,我们评估了昆虫病原真菌(EPF)白僵菌和冬虫夏草以及化学杀虫剂spiromesifen在实验室生物测定中的联合应用。使用生态毒理学混合物模型描述了EPFs和杀虫剂之间的复杂相互作用,MixTox分析.根据所使用的EPF和化学浓度,混合物导致可加性,协同作用,或白虱总死亡率的拮抗作用。B.bassiana和spiromesifen的组合,与单一治疗相比,提高了5天的杀伤率。结果表明,EPF和spiromesifen联合应用作为一种有效的害虫综合管理策略的潜力,并证明了MixTox模型描述复杂混合物相互作用的适用性。
    Greenhouse whitefly (Trialeurodes vaporariorum) is a major global pest, causing direct damage to plants and transmitting viral plant diseases. Management of T. vaporariorum is problematic because of widespread pesticide resistance, and many greenhouse growers rely on biological control agents to regulate T. vaporariorum populations. However, these are often slow and vary in efficacy, leading to subsequent application of chemical insecticides when pest populations exceed threshold levels. Combining chemical and biological pesticides has great potential but can result in different outcomes, from positive to negative interactions. In this study, we evaluated co-applications of the entomopathogenic fungi (EPF) Beauveria bassiana and Cordyceps farinosa and the chemical insecticide spiromesifen in laboratory bioassays. Complex interactions between the EPFs and insecticide were described using an ecotoxicological mixtures model, the MixTox analysis. Depending on the EPF and chemical concentrations applied, mixtures resulted in additivity, synergism, or antagonism in terms of total whitefly mortality. Combinations of B. bassiana and spiromesifen, compared to single treatments, increased the rate of kill by 5 days. Results indicate the potential for combined applications of EPF and spiromesifen as an effective integrated pest management strategy and demonstrate the applicability of the MixTox model to describe complex mixture interactions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    查尔酮是生物合成黄酮类化合物的中间产物,具有广泛的生物学特性,包括抗菌和抗癌活性。在其结构中引入氯原子和葡萄糖基部分可以增加其生物利用度,生物活性,和药理使用。组合的化学和生物技术方法可用于获得此类化合物。因此,2-氯-2'-羟基查耳酮和3-氯-2'-羟基查耳酮在两株丝状真菌的培养物中合成并生物转化,即镰刀菌KCHJ2和球孢白僵菌KCHJ1.5获得其新型糖基化衍生物。药代动力学,药物相似,并使用化学信息学工具预测它们的生物活性。2-氯-2'-羟基查耳酮,3-氯-2'-羟基查耳酮,它们的主要糖基化产物,并筛选了2'-氢chyclone对几种微生物菌株的抗菌活性。带有氯原子的查耳酮和3-氯二氢查耳酮2\'-O-β-D-(4“-O-甲基)-吡喃葡萄糖苷完全抑制了大肠杆菌10,536的生长。菌株铜绿假单胞菌DSM939对测试化合物的作用最具抗性。然而,具有氯原子的查尔酮苷元和糖苷几乎完全抑制了细菌金黄色葡萄球菌DSM799和白色念珠菌DSM1386的生长。取决于测试的物种,测试的化合物对乳酸菌具有不同的作用。总的来说,氯化查耳酮在抑制所测试的微生物菌株方面比未氯化的对应物更有效,而糖苷配基比其糖苷更有效。
    Chalcones are intermediate products in the biosynthesis of flavonoids, which possess a wide range of biological properties, including antimicrobial and anticancer activities. The introduction of a chlorine atom and the glucosyl moiety into their structure may increase their bioavailability, bioactivity, and pharmacological use. The combined chemical and biotechnological methods can be applied to obtain such compounds. Therefore, 2-chloro-2\'-hydroxychalcone and 3-chloro-2\'-hydroxychalcone were synthesized and biotransformed in cultures of two strains of filamentous fungi, i.e. Isaria fumosorosea KCH J2 and Beauveria bassiana KCH J1.5 to obtain their novel glycosylated derivatives. Pharmacokinetics, drug-likeness, and biological activity of them were predicted using cheminformatics tools. 2-Chloro-2\'-hydroxychalcone, 3-chloro-2\'-hydroxychalcone, their main glycosylation products, and 2\'-hydrochychalcone were screened for antimicrobial activity against several microbial strains. The growth of Escherichia coli 10,536 was completely inhibited by chalcones with a chlorine atom and 3-chlorodihydrochalcone 2\'-O-β-D-(4″-O-methyl)-glucopyranoside. The strain Pseudomonas aeruginosa DSM 939 was the most resistant to the action of the tested compounds. However, chalcone aglycones and glycosides with a chlorine atom almost completely inhibited the growth of bacteria Staphylococcus aureus DSM 799 and yeast Candida albicans DSM 1386. The tested compounds had different effects on lactic acid bacteria depending on the tested species. In general, chlorinated chalcones were more effective in the inhibition of the tested microbial strains than their unchlorinated counterparts and aglycones were a little more effective than their glycosides.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Cla4,一种对非昆虫病原真菌生活方式至关重要的直系同源p21激活激酶,在低胰虫昆虫病原体中有两个功能未知的旁系同源物(Cla4A/B)。这里,我们报道了Cla4A在无性和昆虫病原生命周期所需的球孢白僵菌基因表达网络中的调节作用,而Cla4B在功能上是多余的.cla4A的缺失导致严重的生长缺陷,降低应力耐受性,延迟分生孢子,改变分生孢子模式,分生孢子质量受损,并通过角质层穿透消除了致病性,与没有受cla4B缺失影响的表型形成对比。在Δcla4A中,5288个失调基因与表型缺陷相关,通过靶向基因互补恢复。其中,3699个基因下调,包括在转录组水平上废除的1300多个。数以百计的下调基因参与了转录的调节,翻译,以及翻译后修饰和核染色体的组织和功能,染色质,和蛋白质-DNA复合物。预测130个失调基因的启动子区域中的DNA结合元件被Cla4A结构域靶向。纯化的Cla4A提取物的样品被证明与参与多种应激反应途径的12个预测基因的启动子DNA结合。因此,Cla4A充当基因组表达和稳定性的新型调节剂,并介导昆虫病原真菌适应宿主和环境所需的基因表达网络。
    Cla4, an orthologous p21-activated kinase crucial for non-entomopathogenic fungal lifestyles, has two paralogs (Cla4A/B) functionally unknown in hypocrealean entomopathogens. Here, we report a regulatory role of Cla4A in gene expression networks of Beauveria bassiana required for asexual and entomopathogenic lifecycles while Cla4B is functionally redundant. The deletion of cla4A resulted in severe growth defects, reduced stress tolerance, delayed conidiation, altered conidiation mode, impaired conidial quality, and abolished pathogenicity through cuticular penetration, contrasting with no phenotype affected by cla4B deletion. In ∆cla4A, 5288 dysregulated genes were associated with phenotypic defects, which were restored by targeted gene complementation. Among those, 3699 genes were downregulated, including more than 1300 abolished at the transcriptomic level. Hundreds of those downregulated genes were involved in the regulation of transcription, translation, and post-translational modifications and the organization and function of the nuclear chromosome, chromatin, and protein-DNA complex. DNA-binding elements in promoter regions of 130 dysregulated genes were predicted to be targeted by Cla4A domains. Samples of purified Cla4A extract were proven to bind promoter DNAs of 12 predicted genes involved in multiple stress-responsive pathways. Therefore, Cla4A acts as a novel regulator of genomic expression and stability and mediates gene expression networks required for insect-pathogenic fungal adaptations to the host and environment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    碱性亮氨酸拉链域转录因子(TFs),其中酵母激活蛋白(Yap)是一个重要的类别,对菌核的发展至关重要,应激反应,营养生长,和孢子粘附。然而,关于YapTFs如何对昆虫病原真菌的致病性没有任何了解。在这项工作中,球孢白僵菌用于鉴定和敲除与Yap相似的酵母基因BbYap1。BbYap1基因缺失对球孢芽孢杆菌的脂质稳态有影响;油酸,例如,下降了95.69%。与野生菌株相比,BbYap1突变体的毒力和营养性发育要少得多,同时对化学压力表现出更大的敏感性。值得注意的是,BbYap1缺失带来的生理异常在很大程度上是通过添加外源油酸来修复的,如在血腔注射组中昆虫存活率的显著增加所见。感染BbYap1突变体后,宿主表现出β-1,3-葡聚糖识别蛋白表达的显著下调,gallerimycin,gloverin,和类似于moricin的蛋白质基因.同样,外源油酸的引入显著增加了宿主对上述基因的表达。总之,BbYap1通过逃避宿主体液防御来调节细胞酶脂质稳态和真菌毒力,这有助于真菌化学胁迫和营养发育。
    目的:昆虫病原真菌(EPF)在生物防治策略中提供了一种有效且生态友好的替代方法来遏制昆虫种群。当EPF进入宿主的血淋巴时,他们会遇到各种各样的应激反应,如免疫和氧化应激。碱性亮氨酸拉链域转录因子,其中酵母激活蛋白(Yap)是一个重要的类别,具有与新陈代谢相关的多种生物学功能,发展,繁殖,分生孢子,应激反应,和致病性。这项研究表明,球孢白僵菌的BbYap1通过逃避宿主体液防御来调节细胞酶脂质稳态和真菌毒力,这有助于真菌化学胁迫和营养发育。这些发现为理解YAP在EPF中的分子作用提供了新的视角。
    Basic leucine zipper domain transcription factors (TFs), of which yeast activator protein (Yap) is a significant class, are crucial for the development of sclerotia, the stress response, vegetative growth, and spore adhesion. Nevertheless, nothing is known about how Yap TFs contribute to the pathogenicity of entomopathogenic fungus. In this work, Beauveria bassiana was used to identify and knock out the yeast gene BbYap1, which is similar to Yap. The BbYap1 gene deletion has an impact on lipid homeostasis of B. bassiana; oleic acid, for example, dropped by 95.69%. The BbYap1 mutant exhibited much less virulence and vegetative development in comparison to the wild strain, while demonstrating a greater sensitivity to chemical stress. It is noteworthy that the physiological abnormalities brought on by BbYap1 deletion were largely repaired by the addition of exogenous oleic acid, as seen by the notable increase in insect survival in the blood cavity injection group. Following infection with the BbYap1 mutant, the host exhibits a considerable down-regulation of the expression of β-1,3-glucan recognition protein, gallerimycin, gloverin, and moricin-like protein genes. Likewise, the introduction of exogenous oleic acid markedly increased the host\'s expression of the aforementioned genes. In summary, BbYap1 regulates cellular enzyme lipid homeostasis and fungal virulence by eluding host humoral defense, which contributes to fungal chemical stress and vegetative development.
    OBJECTIVE: Entomopathogenic fungi (EPF) offer an effective and eco-friendly alternative to curb insect populations in biocontrol strategy. When EPF enter the hemolymph of their host, they encounter a variety of stress reactions, such as immunological and oxidative stress. Basic leucine zipper domain transcription factors, of which yeast activator protein (Yap) is a significant class, have diverse biological functions related to metabolism, development, reproduction, conidiation, stress responses, and pathogenicity. This study demonstrates that BbYap1 of Beauveria bassiana regulates cellular enzyme lipid homeostasis and fungal virulence by eluding host humoral defense, which contributes to fungal chemical stress and vegetative development. These findings offer fresh perspectives for comprehending molecular roles of YAP in EPF.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    球孢白僵菌是一种昆虫病理学真菌,广泛用于害虫的生物防治。基因破坏是研究参与真菌发育或其与宿主相互作用的基因功能的常用方法。然而,产生基因缺失突变体是一项耗时的工作。转录因子OpS3已被鉴定为球孢芽孢杆菌中红色次级代谢产物卵孢子菌素的正调节因子。在这项研究中,我们设计了一种新的筛选系统,将组成型OpS3表达盒整合到靶基因同源臂之一之外。异位转化体主要表现出红色,卵孢子菌素产生,而敲除突变体由于重组事件引起的OpS3表达盒的丢失而表现为白色菌落。该筛选策略用于获得tens和NRPS基因的缺失突变体。通过筛选少于10个突变体获得了正确的突变体,正效率为50%至75%。该系统大大减少了与DNA提取和PCR扩增相关的工作量,从而提高在巴氏杆菌中获得正确转化体的效率。
    Beauveria bassiana is an entomopathognic fungus, which is widely employed in the biological control of pests. Gene disruption is a common method for studying the functions of genes involved in fungal development or its interactions with hosts. However, generating gene deletion mutants was a time-consuming work. The transcriptional factor OpS3 has been identified as a positive regulator of a red secondary metabolite oosporein in B. bassiana. In this study, we have designed a new screening system by integrating a constitutive OpS3 expression cassette outside one of the homologous arms of target gene. Ectopic transformants predominantly exhibit a red colour with oosporein production, while knockout mutants appear as white colonies due to the loss of the OpS3 expression cassette caused by recombinant events. This screening strategy was used to obtain the deletion mutants of both tenS and NRPS genes. Correct mutants were obtained by screening fewer than 10 mutants with a positive efficiency ranging from 50% to 75%. This system significantly reduces the workload associated with DNA extraction and PCR amplification, thereby enhancing the efficiency of obtaining correct transformants in B. bassiana.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    无性发育是球孢白僵菌的主要繁殖和传播方式,是其致病的基础。分生孢子的调控机制和关键基因资源的利用是提高球孢白僵菌分生孢子产量和品质的关键环节。它们的澄清可能会促进真菌农药的产业化。这里,我们比较了形态学的调节,抵抗外部压力,毒力,上游发育调控基因fluG和关键基因brlA之间的营养利用能力,abaA,和wetA在中央生长发育途径中。结果表明,ΔbrlA和ΔabaA突变体完全失去了分生孢子的能力,而ΔwetA突变体的分生孢子能力严重降低。尽管fluG的缺失并没有像brlA的缺失那样降低分生孢子的能力,abaA,和wetA,它显著降低了真菌对外部压力的反应,毒力,和养分利用,而其他三个基因的缺失影响不大。通过转录组分析和酵母核系统文库的筛选,我们发现ΔfluG突变体的差异表达基因集中在ABC转运体的信号通路中,丙酸代谢,色氨酸代谢,DNA复制,失配修复,和脂肪酸代谢。FluG直接作用于参与各种信号通路如代谢的40种蛋白质,氧化应激,和细胞稳态。分析表明,fluG的调控功能主要参与DNA复制,细胞稳态,真菌生长和代谢,以及对外部压力的反应。我们的研究结果揭示了fluG在无性发育中的生物学功能,对几种环境压力的响应以及对白杨无性发育调控网络的影响。
    Asexual development is the main propagation and transmission mode of Beauveria bassiana and the basis of its pathogenicity. The regulation mechanism of conidiation and the key gene resources for utilization are key links to improving the conidia yield and quality of Beauveria bassiana. Their clarification may promote the industrialization of fungal pesticides. Here, we compared the regulation of morphology, resistance to external stress, virulence, and nutrient utilization capacity between the upstream developmental regulatory gene fluG and the key genes brlA, abaA, and wetA in the central growth and development pathway. The results showed that the ΔbrlA and ΔabaA mutants completely lost the capacity to conidiate and that the ΔwetA mutant had seriously reduced conidiation capacity. Although the deletion of fluG did not reduce the conidiation ability as much as deletions of brlA, abaA, and wetA, it significantly reduced the fungal response to external stress, virulence, and nutrient utilization, while the deletion of the three other genes had little effect. Via transcriptome analysis and screening the yeast nuclear system library, we found that the differentially expressed genes in the ΔfluG mutants were concentrated in the signaling pathways of ABC transporters, propionate metabolism, tryptophan metabolism, DNA replication, mismatch repair, and fatty acid metabolism. FluG directly acted on 40 proteins that were involved in various signaling pathways such as metabolism, oxidative stress, and cell homeostasis. The analysis indicated that the regulatory function of fluG was mainly involved in DNA replication, cell homeostasis, fungal growth and metabolism, and the response to external stress. Our results revealed the biological function of fluG in asexual development and the responses to several environmental stresses as well as its influence on the asexual development regulatory network in B. bassiana.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Rad6在许多真菌物种中作为调节细胞过程的泛素结合蛋白起作用。然而,它在丝状昆虫病原真菌中的作用仍然知之甚少。这项研究描述了白僵菌中Rad6的特征,一种丝状真菌,在全球范围内被广泛用作关键的杀真菌剂。结果表明Rad6与分生孢子特性之间存在显着关联,热冲击响应,和UV-B耐受性。同时,突变菌株对氧化应激表现出更高的敏感性,细胞壁干扰剂,DNA损伤应激,和长时间的热休克。此外,Rad6的缺失显着延长了由B.basiana感染的GalleriaMellonella的中位致死时间(LT50)。这种延迟可能归因于减少的Pr1蛋白酶和细胞外表皮降解酶,二态过渡率降低,和抗氧化酶失调。此外,Rad6的缺失对基因信息处理有更明显的影响,新陈代谢,和正常条件下的细胞过程。然而,其影响仅限于氧化应激代谢。这项研究提供了一个全面的了解Rad6在分生孢子和菌丝应激耐受性的关键作用,环境适应,球孢白僵菌的发病机制。
    Rad6 functions as a ubiquitin-conjugating protein that regulates cellular processes in many fungal species. However, its role in filamentous entomopathogenic fungi remains poorly understood. This study characterizes Rad6 in Beauveria bassiana, a filamentous fungus widely employed as a critical fungicide globally. The results demonstrate a significant association between Rad6 and conidial properties, heat shock response, and UV-B tolerance. Concurrently, the mutant strain exhibited heightened sensitivity to oxidative stress, cell wall interfering agents, DNA damage stress, and prolonged heat shock. Furthermore, the absence of Rad6 significantly extended the median lethal time (LT50) of Galleria mellonella infected by B. bassiana. This delay could be attributed to reduced Pr1 proteases and extracellular cuticle-degrading enzymes, diminished dimorphic transition rates, and dysregulated antioxidant enzymes. Additionally, the absence of Rad6 had a more pronounced effect on genetic information processing, metabolism, and cellular processes under normal conditions. However, its impact was limited to metabolism in oxidative stress. This study offers a comprehensive understanding of the pivotal roles of Rad6 in conidial and hyphal stress tolerance, environmental adaptation, and the pathogenesis of Beauveria bassiana.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号