super-resolution imaging

超分辨率成像
  • 文章类型: Journal Article
    超分辨率成像,尤其是单分子定位方法,引发了一场荧光团工程革命,追逐稀疏的单分子暗亮闪烁变换。然而,从结构上设计荧光团操纵单分子闪烁动力学是一个挑战。在这种追求中,我们通过将可光活化的亚硝基笼式策略创新地整合到自闪烁的磺酰胺中以形成亚硝基笼式磺酰胺罗丹明(NOSR)来开发触发策略。我们的荧光团在光触发的笼式单元释放后表现出可控的自闪烁事件。与自闪烁类似物相比,这种出色的闪烁动力学改善了微管的超分辨率成像完整性。借助最重要的单分子荧光动力学,我们成功地重建了核孔的环状结构和线粒体外膜的轴向形态。我们预见,我们的光活化和自闪烁的合成方法将有助于罗丹明设计超分辨率成像。
    Super-resolution imaging, especially a single-molecule localization approach, has raised a fluorophore engineering revolution chasing sparse single-molecule dark-bright blinking transforms. Yet, it is a challenge to structurally devise fluorophores manipulating the single-molecule blinking kinetics. In this pursuit, we have developed a triggering strategy by innovatively integrating the photoactivatable nitroso-caging strategy into self-blinking sulfonamide to form a nitroso-caged sulfonamide rhodamine (NOSR). Our fluorophore demonstrated controllable self-blinking events upon phototriggered caging unit release. This exceptional blink kinetics improved the super-resolution imaging integrity on microtubules compared to self-blinking analogues. With the aid of paramount single-molecule fluorescence kinetics, we successfully reconstructed the ring structure of nuclear pores and the axial morphology of mitochondrial outer membranes. We foresee that our synthetic approach of photoactivation and self-blinking would facilitate rhodamine devising for super-resolution imaging.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    本研究旨在探讨超声超分辨率成像(USSRI)评估急性肾损伤(AKI)患者肾微循环的临床应用价值。本研究共纳入62例脓毒症患者-38例AKI患者和24例对照患者-从中获得肾脏超声和临床数据。通过肘静脉施用SonoVue造影剂(1.5mL),并在MindrayResonaA20超声单元上获得2分钟的对比增强超声(CEUS)图像。分析肾灌注时间-强度曲线(TIC),15分钟后,获得额外的图像以创建显微血流图.计算微血管密度(MVD),并分析其与血清肌酐(Scr)水平的相关性。心率有显著差异,Scr,血尿素氮,24小时尿量,两组肾小球滤过率(p<0.01),而其他特征,如肾脏形态学,AKI组与对照组之间无显著差异(p>0.05)。与对照组相比,AKI组的肾皮质达到峰值的时间和平均通过时间延长(p<0.01),而TIC下的峰强度和面积均低于对照组(p<0.05)。AKI组肾皮质MVD低于对照组(18.46±5.90%vs.44.93±11.65%;p<0.01),AKI组的MVD与Scr呈负相关(R=-0.84;p<0.01)。根据上述结果,USSRI可以有效评估AKI患者的肾微循环,是一种诊断AKI和定量评估肾微循环的无创技术。
    The present study aimed to explore the clinical applicability of ultrasound super-resolution imaging (US SRI) for assessing renal microcirculation in patients with acute kidney injury (AKI). A total of 62 patients with sepsis were enrolled in the present study-38 with AKI and 24 control patients-from whom renal ultrasounds and clinical data were obtained. SonoVue contrast (1.5 mL) was administered through the elbow vein and contrast-enhanced ultrasound (CEUS) images were obtained on a Mindray Resona A20 ultrasound unit for 2 min. The renal perfusion time-intensity curve (TIC) was analyzed and, after 15 min, additional images were obtained to create a microscopic blood flow map. Microvascular density (MVD) was calculated and its correlation with serum creatinine (Scr) levels was analyzed. There were significant differences in heart rate, Scr, blood urea nitrogen, urine volume at 24 h, and glomerular filtration rate between the two groups (p < 0.01), whereas other characteristics, such as renal morphology, did not differ significantly between the AKI group and control group (p > 0.05). The time to peak and mean transit times of the renal cortex in the AKI group were prolonged compared to those in the control group (p < 0.01), while the peak intensity and area under the TIC were lower than those in the control group (p < 0.05). The MVD of the renal cortex in the AKI group was lower than that in the control group (18.46 ± 5.90% vs. 44.93 ± 11.65%; p < 0.01) and the MVD in the AKI group showed a negative correlation with Scr (R = -0.84; p < 0.01). Based on the aforementioned results, US SRI can effectively assess renal microcirculation in patients with AKI and is a noninvasive technique for the diagnosis of AKI and quantitative evaluation of renal microcirculation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    超分辨率荧光成像已成为研究质膜(PM)的纳米级结构和功能的有力工具。然而,由于探针光稳定性的限制和细胞内化染色的问题,在实现PM动力学的超分辨率成像方面仍然存在挑战。在这里,我们报告了组装介导的缓冲荧光探针BMP-14和BMP-16表现出快速的PM标记和在PM上延长的保留时间(超过2小时)。烷基链的掺入证明可有效促进BMP-14和BMP-16聚集成非荧光纳米颗粒以实现荧光性并调节缓冲能力以快速替代光漂白的探针,从而确保PM的稳定的长期超分辨率成像。利用这些PM缓冲探头,我们观察到PM丝足的动态运动和持续收缩,使用结构化照明显微镜(SIM)导致形成细胞外囊泡(EV)。此外,我们发现了两种不同的EV融合模式:一种通过相邻脂质融合,另一种通过丝状脂质牵引融合。动态跟踪PM外EV融合的整个过程。此外,BMP-16在用于细胞膜染色时表现出诱导单分子荧光闪烁的独特能力。该性质使得BMP-16适用于细胞膜的PAINT成像。
    Super-resolution fluorescence imaging has emerged as a potent tool for investigating the nanoscale structure and function of the plasma membrane (PM). Nevertheless, the challenge persists in achieving super-resolution imaging of PM dynamics due to limitations in probe photostability and issues with cell internalization staining. Herein, we report assembly-mediated buffering fluorogenic probes BMP-14 and BMP-16 exhibiting fast PM labeling and extended retention time (over 2 h) on PM. The incorporation of alkyl chains proves effective in promoting the aggregation of BMP-14 and BMP-16 into nonfluorescent nanoparticles to realize fluorogenicity and regulate the buffering capacity to rapidly replace photobleached probes ensuring stable long-term super-resolution imaging of PM. Utilizing these PM-buffering probes, we observed dynamic movements of PM filopodia and continuous shrinkage, leading to the formation of extracellular vesicles (EVs) using structured illumination microscopy (SIM). Furthermore, we discovered two distinct modes of EV fusion: one involving fusion through adjacent lipids and the other through filamentous lipid traction. The entire process of EV fusion outside the PM was dynamically tracked. Additionally, BMP-16 exhibited a unique capability of inducing single-molecule fluorescence blinking when used for cell membrane staining. This property makes BMP-16 suitable for the PAINT imaging of cell membranes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    高分辨率和动态生物成像在生命科学和生物医学应用中至关重要。近年来,微球与光学显微镜相结合,为超分辨率成像提供了一种低成本但有前途的解决方案,通过打破衍射屏障。然而,在使用非接触方式精确和平行地控制超透镜方面仍然存在挑战,以满足对所需目标进行大面积扫描成像的需求。这项研究提出了一种基于声波场的策略,用于组装和操纵微米级超透镜阵列,除了通过相位调制实现按需扫描成像。在实验中,声压节点的设计尺寸与微球相当,允许空间分散的微球排列成每个节点一个单元的阵列。具有各种直径的液滴微透镜可以适应阵列,通过应用不同的频率允许宽范围的间隔周期。此外,通过x和y方向的连续相移,这种声学超透镜阵列实现了按需移动,用于并行高分辨率虚拟图像捕获和扫描纳米结构和生物细胞样本。作为比较,这种非接触和经济有效的声学方式可以获得超过100倍的单个镜头的采集效率,在推进超分辨率显微镜和亚细胞水平生物成像方面有希望。
    High-resolution and dynamic bioimaging is essential in life sciences and biomedical applications. In recent years, microspheres combined with optical microscopes have offered a low cost but promising solution for super-resolution imaging, by breaking the diffraction barrier. However, challenges still exist in precisely and parallelly superlens controlling using a noncontact manner, to meet the demands of large-area scanning imaging for desired targets. This study proposes an acoustic wavefield-based strategy for assembling and manipulating micrometer-scale superlens arrays, in addition to achieving on-demand scanning imaging through phase modulation. In experiments, acoustic pressure nodes are designed to be comparable in size to microspheres, allowing spatially dispersed microspheres to be arranged into arrays with one unit per node. Droplet microlenses with various diameters can be adapted in the array, allowing for a wide range of spacing periods by applying different frequencies. In addition, through the continuous phase shifting in the x and y directions, this acoustic superlens array achieves on-demand moving for the parallel high-resolution virtual image capturing and scanning of nanostructures and biological cell samples. As a comparison, this noncontact and cost-effective acoustic manner can obtain more than ∼100 times the acquisition efficiency of a single lens, holding promise in advancing super-resolution microscopy and subcellular-level bioimaging.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    了解催化剂的操作缺陷调节性能对于建立催化剂的准确结构-活性关系至关重要。这里,使用单分子超分辨率荧光显微镜的工具,通过在单个有缺陷的Pt纳米管上对甲醇氧化反应过程中的中间CO形成/氧化进行成像,我们发现,具有较多缺陷的新鲜Pt末端比具有较少缺陷的新鲜中心区域更活跃和抗CO中毒,而这种差异可以在催化诱导的Pt表面上逐步产生更多缺陷后逆转。进一步的实验结果揭示了催化性能(活性和抗CO能力)与微调缺陷密度之间的操作性火山关系。系统的DFT计算表明,这种操作火山关系可归因于与缺陷相关的过渡态自由能以及由CO中间体吸附驱动的缺陷或Pt原子移动的加速表面重建。这些见解加深了我们对单分子和亚粒子水平的操作缺陷驱动催化的理解,这能够帮助设计高效的基于缺陷的催化剂。
    Understanding the operando defect-tuning performance of catalysts is critical to establish an accurate structure-activity relationship of a catalyst. Here, with the tool of single-molecule super-resolution fluorescence microscopy, by imaging intermediate CO formation/oxidation during the methanol oxidation reaction process on individual defective Pt nanotubes, we reveal that the fresh Pt ends with more defects are more active and anti-CO poisoning than fresh center areas with less defects, while such difference could be reversed after catalysis-induced step-by-step creation of more defects on the Pt surface. Further experimental results reveal an operando volcano relationship between the catalytic performance (activity and anti-CO ability) and the fine-tuned defect density. Systematic DFT calculations indicate that such an operando volcano relationship could be attributed to the defect-dependent transition state free energy and the accelerated surface reconstructing of defects or Pt-atom moving driven by the adsorption of the CO intermediate. These insights deepen our understanding to the operando defect-driven catalysis at single-molecule and subparticle level, which is able to help the design of highly efficient defect-based catalysts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    超分辨率分子探针(SRMPs)是可视化细胞内药物动力学的重要工具。超越传统显微镜的分辨率极限。在这次审查中,我们概述了SRMP的原则和设计策略,强调它们在准确跟踪药物分子中的作用。通过阐明药物分配的复杂过程,扩散,摄取,亚细胞和分子水平的新陈代谢,SRMP为治疗干预提供了至关重要的见解。此外,我们探索超分辨率成像在疾病治疗中的实际应用,强调SRMP在促进我们对药物作用的理解方面的重要性。最后,我们讨论未来的前景,设想这一领域的潜在进步和创新。总的来说,这篇综述有助于告知和从业者关于SMPs在推动药理学创新和进步方面的效用,为药物开发和优化提供有价值的见解。
    Super-resolution molecular probes (SRMPs) are essential tools for visualizing drug dynamics within cells, transcending the resolution limits of conventional microscopy. In this review, we provide an overview of the principles and design strategies of SRMPs, emphasizing their role in accurately tracking drug molecules. By illuminating the intricate processes of drug distribution, diffusion, uptake, and metabolism at a subcellular and molecular level, SRMPs offer crucial insights into therapeutic interventions. Additionally, we explore the practical applications of super-resolution imaging in disease treatment, highlighting the significance of SRMPs in advancing our understanding of drug action. Finally, we discuss future perspectives, envisioning potential advancements and innovations in this field. Overall, this review serves to inform and practitioners about the utility of SRMPs in driving innovation and progress in pharmacology, providing valuable insights for drug development and optimization.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    化学固定标本的荧光标记,尤其是免疫标记,在超分辨率成像中起着至关重要的作用,因为它提供了一种方便的方法来可视化细胞结构,如线粒体或具有高细节的生物分子的分布。尽管开发了各种不同的探针,可以对活细胞中的线粒体进行超分辨受激发射消耗(STED)成像,这些膜电位依赖性荧光团中的大多数在化学固定后不能很好地保留在线粒体中。缺乏合适的线粒体探针限制了线粒体对活细胞样品的STED成像。在这项研究中,我们引入了一种线粒体特异性探针,PKMitoOrangeFX(PKMOFX),它具有固定驱动的交联基序,并积聚在线粒体内膜中。它在化学固定和775nm的有效耗尽后表现出高荧光保留,能够在醛固定之前和之后进行纳米成像。我们证明了该探针与常规免疫标记和通常用于固定样品的荧光标记的其他策略的相容性。此外,我们证明了PKMOFX促进了相关的超分辨率光学和电子显微镜,通过特征性的线粒体模式实现多色荧光图像和透射EM图像的相关性。我们的探针进一步扩展了用于纳米分辨率的多模态显微镜的线粒体工具包。
    Fluorescence labeling of chemically fixed specimens, especially immunolabeling, plays a vital role in super-resolution imaging as it offers a convenient way to visualize cellular structures like mitochondria or the distribution of biomolecules with high detail. Despite the development of various distinct probes that enable super-resolved stimulated emission depletion (STED) imaging of mitochondria in live cells, most of these membrane-potential-dependent fluorophores cannot be retained well in mitochondria after chemical fixation. This lack of suitable mitochondrial probes has limited STED imaging of mitochondria to live cell samples. In this study, we introduce a mitochondria-specific probe, PK Mito Orange FX (PKMO FX), which features a fixation-driven cross-linking motif and accumulates in the mitochondrial inner membrane. It exhibits high fluorescence retention after chemical fixation and efficient depletion at 775 nm, enabling nanoscopic imaging both before and after aldehyde fixation. We demonstrate the compatibility of this probe with conventional immunolabeling and other strategies commonly used for fluorescence labeling of fixed samples. Moreover, we show that PKMO FX facilitates correlative super-resolution light and electron microscopy, enabling the correlation of multicolor fluorescence images and transmission EM images via the characteristic mitochondrial pattern. Our probe further expands the mitochondrial toolkit for multimodal microscopy at nanometer resolutions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    由于它们对亲核攻击和化学漂白的敏感性而受阻,长期以来,人们一直认为缺电子的方酸染料不适合用于生物成像。这项研究揭示了一个令人惊讶的转折:在水性环境中,漂白不是不可逆的,而是可逆的自发猝灭过程。利用这个新发现,我们介绍了一种新颖的深红色方晶探针,专门用于活细胞超分辨率成像。该探针能够在生理条件下进行单分子定位显微镜(SMLM),而无需有害添加剂或强激光,并表现出由生物亲核试剂协调的自发闪烁,如谷胱甘肽或氢氧根阴离子。具有低占空比(〜0.1%)和高发射速率(在400W/cm2下〜6×104光子/s),方酸探针比基准Cy5染料高出4倍,比硅罗丹明高出1.7倍。带有探针的活细胞SMLM揭示了细胞膜复杂的结构细节,这证明了方酸染料在下一代超分辨率成像中的巨大潜力。
    Hampered by their susceptibility to nucleophilic attack and chemical bleaching, electron-deficient squaraine dyes have long been considered unsuitable for biological imaging. This study unveils a surprising twist: in aqueous environments, bleaching is not irreversible but rather a reversible spontaneous quenching process. Leveraging this new discovery, we introduce a novel deep-red squaraine probe tailored for live-cell super-resolution imaging. This probe enables single-molecule localization microscopy (SMLM) under physiological conditions without harmful additives or intense lasers and exhibits spontaneous blinking orchestrated by biological nucleophiles, such as glutathione or hydroxide anion. With a low duty cycle (∼0.1%) and high-emission rate (∼6 × 104 photons/s under 400 W/cm2), the squaraine probe surpasses the benchmark Cy5 dye by 4-fold and Si-rhodamine by a factor of 1.7 times. Live-cell SMLM with the probe reveals intricate structural details of cell membranes, which demonstrates the high potential of squaraine dyes for next-generation super-resolution imaging.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    纳米尺度形貌中基于DNA的点积累(DNA-PAINT)是一种用于单分子定位显微镜(SMLM)的成熟技术,使分辨率达到几纳米。传统上,DNA-PAINT涉及利用成千上万的单分子荧光图像来生成单个超分辨率图像。这个过程可能很耗时,这对许多研究人员来说是不可行的。这里,我们提出了一种简化的DNA-PAINT标记方法和一种基于深度学习的亚细胞结构快速DNA-PAINT成像策略,如微管。通过使用我们的方法,超分辨率重建可以用以前需要的原始数据的十分之一来实现,以及获取广域图像的选项。因此,DNA-PAINT成像明显加速,使其更容易被更广泛的生物研究人员所接受。
    DNA-based point accumulation in nanoscale topography (DNA-PAINT) is a well-established technique for single-molecule localization microscopy (SMLM), enabling resolution of up to a few nanometers. Traditionally, DNA-PAINT involves the utilization of tens of thousands of single-molecule fluorescent images to generate a single super-resolution image. This process can be time-consuming, which makes it unfeasible for many researchers. Here, we propose a simplified DNA-PAINT labeling method and a deep learning-enabled fast DNA-PAINT imaging strategy for subcellular structures, such as microtubules. By employing our method, super-resolution reconstruction can be achieved with only one-tenth of the raw data previously needed, along with the option of acquiring the widefield image. As a result, DNA-PAINT imaging is significantly accelerated, making it more accessible to a wider range of biological researchers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    大多数聚集诱导发射(AIE)发光物质表现出高亮度,优异的光稳定性,良好的生物相容性,但是这些AIE活性剂,用一块石头杀死两只鸟,从而在受激发射损耗(STED)超分辨率成像和光动力疗法(PDT)中应用,尚未报告,但迫切需要。为了满足STED纳米显微镜和PDT的要求,D-A-π-A-D型DTPABT-HP是通过调节共轭π间隔物来设计的。它表现出红移发射,高PLQY为32.04%,和令人印象深刻的1O2生成(9.24倍相比,RB)的纳米颗粒(NP)。然后,DTPABT-HPNP通过STED纳米显微镜应用于细胞成像,特别是以超高分辨率可视化PDT过程中溶酶体的动态变化。之后,体内PDT也由DTPABT-HPNP进行,导致显著抑制肿瘤生长,抑制率为86%。这项工作有利于多功能剂的设计及其在生物学研究中的光热机理的深刻理解。
    Most aggregation-induced emission (AIE) luminogens exhibit high brightness, excellent photostability, and good biocompatibility, but these AIE-active agents, which kill two birds with one stone to result in applications in both stimulated emission depletion (STED) super-resolution imaging and photodynamic therapy (PDT), have not been reported yet but are urgently needed. To meet the requirements of STED nanoscopy and PDT, D-A-π-A-D type DTPABT-HP is designed by tuning conjugated π spacers. It exhibits red-shifted emission, high PLQY of 32.04%, and impressive 1O2 generation (9.24 fold compared to RB) in nanoparticles (NPs). Then, DTPABT-HP NPs are applied in cell imaging via STED nanoscopy, especially visualizing the dynamic changes of lysosomes in the PDT process at ultrahigh resolution. After that, in vivo PDT was also conducted by DTPABT-HP NPs, resulting in significantly inhibited tumor growth, with an inhibition rate of 86%. The work here is beneficial to the design of multifunctional agents and the deep understanding of their phototheranostic mechanism in biological research.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号