关键词: acoustics bioimaging microlens array super-resolution imaging superlens

Mesh : Acoustics Humans Microspheres Lenses Particle Size

来  源:   DOI:10.1021/acsnano.4c03650

Abstract:
High-resolution and dynamic bioimaging is essential in life sciences and biomedical applications. In recent years, microspheres combined with optical microscopes have offered a low cost but promising solution for super-resolution imaging, by breaking the diffraction barrier. However, challenges still exist in precisely and parallelly superlens controlling using a noncontact manner, to meet the demands of large-area scanning imaging for desired targets. This study proposes an acoustic wavefield-based strategy for assembling and manipulating micrometer-scale superlens arrays, in addition to achieving on-demand scanning imaging through phase modulation. In experiments, acoustic pressure nodes are designed to be comparable in size to microspheres, allowing spatially dispersed microspheres to be arranged into arrays with one unit per node. Droplet microlenses with various diameters can be adapted in the array, allowing for a wide range of spacing periods by applying different frequencies. In addition, through the continuous phase shifting in the x and y directions, this acoustic superlens array achieves on-demand moving for the parallel high-resolution virtual image capturing and scanning of nanostructures and biological cell samples. As a comparison, this noncontact and cost-effective acoustic manner can obtain more than ∼100 times the acquisition efficiency of a single lens, holding promise in advancing super-resolution microscopy and subcellular-level bioimaging.
摘要:
高分辨率和动态生物成像在生命科学和生物医学应用中至关重要。近年来,微球与光学显微镜相结合,为超分辨率成像提供了一种低成本但有前途的解决方案,通过打破衍射屏障。然而,在使用非接触方式精确和平行地控制超透镜方面仍然存在挑战,以满足对所需目标进行大面积扫描成像的需求。这项研究提出了一种基于声波场的策略,用于组装和操纵微米级超透镜阵列,除了通过相位调制实现按需扫描成像。在实验中,声压节点的设计尺寸与微球相当,允许空间分散的微球排列成每个节点一个单元的阵列。具有各种直径的液滴微透镜可以适应阵列,通过应用不同的频率允许宽范围的间隔周期。此外,通过x和y方向的连续相移,这种声学超透镜阵列实现了按需移动,用于并行高分辨率虚拟图像捕获和扫描纳米结构和生物细胞样本。作为比较,这种非接触和经济有效的声学方式可以获得超过100倍的单个镜头的采集效率,在推进超分辨率显微镜和亚细胞水平生物成像方面有希望。
公众号