关键词: kinetics photouncaging self-blinking single-molecule super-resolution imaging

来  源:   DOI:10.1021/acsnano.4c03809

Abstract:
Super-resolution imaging, especially a single-molecule localization approach, has raised a fluorophore engineering revolution chasing sparse single-molecule dark-bright blinking transforms. Yet, it is a challenge to structurally devise fluorophores manipulating the single-molecule blinking kinetics. In this pursuit, we have developed a triggering strategy by innovatively integrating the photoactivatable nitroso-caging strategy into self-blinking sulfonamide to form a nitroso-caged sulfonamide rhodamine (NOSR). Our fluorophore demonstrated controllable self-blinking events upon phototriggered caging unit release. This exceptional blink kinetics improved the super-resolution imaging integrity on microtubules compared to self-blinking analogues. With the aid of paramount single-molecule fluorescence kinetics, we successfully reconstructed the ring structure of nuclear pores and the axial morphology of mitochondrial outer membranes. We foresee that our synthetic approach of photoactivation and self-blinking would facilitate rhodamine devising for super-resolution imaging.
摘要:
超分辨率成像,尤其是单分子定位方法,引发了一场荧光团工程革命,追逐稀疏的单分子暗亮闪烁变换。然而,从结构上设计荧光团操纵单分子闪烁动力学是一个挑战。在这种追求中,我们通过将可光活化的亚硝基笼式策略创新地整合到自闪烁的磺酰胺中以形成亚硝基笼式磺酰胺罗丹明(NOSR)来开发触发策略。我们的荧光团在光触发的笼式单元释放后表现出可控的自闪烁事件。与自闪烁类似物相比,这种出色的闪烁动力学改善了微管的超分辨率成像完整性。借助最重要的单分子荧光动力学,我们成功地重建了核孔的环状结构和线粒体外膜的轴向形态。我们预见,我们的光活化和自闪烁的合成方法将有助于罗丹明设计超分辨率成像。
公众号