microdomains

微结构域
  • 文章类型: Journal Article
    制备同时具有高度坚固和坚韧性能的材料一直是一个巨大的挑战。热固性树脂作为一种广泛使用的高分子材料,没有协同的强度和韧性,限制了其在某些特殊领域的应用。在这份报告中,我们提出了一种有效的策略来制备具有协同强度和韧性的热固性树脂。在这种方法中,首先制备了具有动态半缩醛键的软硬微球,然后热压在界面处交联。具体来说,通过沉淀聚合制备刚性或柔性微球。热压后,所得的刚软混合材料同时具有优异的强度和韧性。与前体刚性或柔性材料相比,刚软共混膜(RSBF)的韧性分别提高到240%和2100%,分别,而强度与刚性前体相当。与传统的破碎相比,混合,并对刚性或软质材料进行热压以获得不均匀的材料,刚软共混膜的强度和韧性分别提高到168%和255%,分别。这种方法对于制造具有强度和韧性的独特组合的聚合物热固性材料具有重要的前景。本文受版权保护。保留所有权利。
    Preparation of materials that possess highly strong and tough properties simultaneously is a great challenge. Thermosetting resins as a type of widely used polymeric materials without synergistic strength and toughness limit their applications in some special fields. In this report, an effective strategy to prepare thermosetting resins with synergistic strength and toughness, is presented. In this method, the soft and rigid microspheres with dynamic hemiaminal bonds are fabricated first, followed by hot-pressing to crosslink at the interfaces. Specifically, the rigid or soft microspheres are prepared via precipitation polymerization. After hot-pressing, the resulting rigid-soft blending materials exhibit superior strength and toughness, simultaneously. As compared with the precursor rigid or soft materials, the toughness of the rigid-soft blending films (RSBFs) is improved to 240% and 2100%, respectively, while the strength is comparable to the rigid precursor. As compared with the traditional crushing, blending, and hot-pressing of rigid or soft materials to get the nonuniform materials, the strength and toughness of the RSBFs are improved to 168% and 255%, respectively. This approach holds significant promise for the fabrication of polymer thermosets with a unique combination of strength and toughness.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    迁移小体是一种新发现的迁移细胞的细胞器。移动体发挥不同的生理作用,包括线粒体质量控制,细胞间物质的横向转移,并将信号分子传递到空间定义的位置。迁移体的形成依赖于四跨膜蛋白,一组含有四个跨膜结构域的膜蛋白,其形成称为四跨膜蛋白富集的微域(TEMs)的膜微域。在这次审查中,我们将讨论迁移体生物发生的机制,重点关注TEM的作用和TEM形成的组织原则。
    The migrasome is a newly discovered organelle of migrating cells. Migrasomes play diverse physiological roles including mitochondrial quality control, lateral transfer of material between cells, and delivery of signaling molecules to spatially defined locations. The formation of migrasomes is dependent on tetraspanins, a group of membrane proteins containing four transmembrane domains, which form membrane microdomains named tetraspanin-enriched microdomains (TEMs). In this review, we will discuss the mechanisms for migrasome biogenesis, with a focus on the role of TEMs and the organizing principles underlying the formation of TEMs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号