click chemistry

单击 “化学 ”
  • 文章类型: Journal Article
    在过去的几十年中,用于标记蛋白质的代谢化学报告基因(MCR)的方法已被广泛使用。然而,用完全保护的MCR产生的人工副反应,称为S-糖修饰,通过碱基促进的β-消除和Michael加成与半胱氨酸残基发生,导致蛋白质组鉴定中的假阳性。因此,下一代MCR,包括部分保护的策略和对单糖主链的修饰,已经出现了提高标签效率的方法。在本文中,我们制备了15种非天然单糖,以研究其结构与S-糖修饰标记的关系。我们的结果表明,Ac4GlcNAz和Ac4GalNAz在检测到的化合物中表现出最显着的标记作用。值得注意的是,Ac4ManNAz,Ac46AzGlucose和Ac46AzGalactose含有相似的结构,但没有显示与它们相似的稳健信号。此外,对1-的其他修改,2-,3-,4-和6-位点表明S-糖修饰的副反应最小,提出了一种可能性,即单糖底物的微妙修饰可能会改变其在生物合成过程中的作用,例如,通过改变电负性或增强空间位阻效应。总之,我们的发现为在体外和体内选择合适的选择性标记蛋白探针而没有不希望的S-糖修饰提供了新的途径。
    The approach of metabolic chemical reporters (MCRs) for labeling proteins has been widely used in the past several decades. Nevertheless, artificial side reaction generated with fully protected MCRs, termed S-glyco-modification, occurs with cysteine residues through base-promoted β-elimination and Michael addition, leading to false positives in the proteomic identification. Therefore, next generation of MCRs, including partially protected strategy and modifications on the backbone of monosaccharides, have emerged to improve the labeling efficiency. In this paper, we prepared fifteen kinds of unnatural monosaccharides to investigate the relationships of structures and S-glyco-modification labeling. Our results demonstrated that Ac4GlcNAz and Ac4GalNAz exhibited the most remarkable labeling effects among the detected compounds. Of note, Ac4ManNAz, Ac46AzGlucose and Ac46AzGalactose containing similar structures but did not show similar robust signals as them. Moreover, other modifications on the 1-, 2-, 3-, 4- and 6-site indicated minimal side reactions of S-glyco-modification, raising a possibility that subtle modifications of monosaccharide substrate may alter its role in the process of biosynthesis, for example, by change of electronegativity or enhancement of steric hindrance effects. In conclusion, our discoveries provide a new avenue to choose appropriate probe for selective label proteins in vitro and in vivo without undesired S-glyco-modification.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    铜催化的点击化学为激活疗法提供了创造性的策略,而不会破坏生物过程。尽管付出了巨大的努力,目前的铜催化剂在实现高效率方面面临着根本性的挑战,原子经济,和组织特异性选择性。在这里,我们开发了一种简单的“混合匹配合成策略”,以制造一种仿生的单位点铜-联吡啶基铈金属有机框架(Cu/Ce-MOF@M),用于高效和肿瘤细胞特异性的生物正交催化。这种优雅的方法在MOF架构中实现了孤立的单Cu位点,导致异常高的催化性能。Cu/Ce-MOF@M在单颗粒水平上比广泛使用的MOF负载的铜纳米颗粒高32.1倍的催化活性,首先由单分子荧光显微镜证明。此外,用癌细胞膜伪装,Cu/Ce-MOF@M对其亲本细胞表现出优先向性。同时,Cu/Ce-MOF@M中的单位点CuII物种被癌细胞中的谷胱甘肽上调还原为CuI,以催化点击反应,使同型癌细胞激活的原位药物合成。此外,Cu/Ce-MOF@M表现出氧化酶和过氧化物酶模拟活性,进一步加强催化癌症治疗。本研究指导了高活性非均相过渡金属催化剂的合理设计,用于有针对性的生物正交反应。
    Copper-catalyzed click chemistry offers creative strategies for activation of therapeutics without disrupting biological processes. Despite tremendous efforts, current copper catalysts face fundamental challenges in achieving high efficiency, atom economy, and tissue-specific selectivity. Herein, we develop a facile \"mix-and-match synthetic strategy\" to fabricate a biomimetic single-site copper-bipyridine-based cerium metal-organic framework (Cu/Ce-MOF@M) for efficient and tumor cell-specific bioorthogonal catalysis. This elegant methodology achieves isolated single-Cu-site within the MOF architecture, resulting in exceptionally high catalytic performance. Cu/Ce-MOF@M favors a 32.1-fold higher catalytic activity than the widely used MOF-supported copper nanoparticles at single-particle level, as first evidenced by single-molecule fluorescence microscopy. Furthermore, with cancer cell-membrane camouflage, Cu/Ce-MOF@M demonstrates preferential tropism for its parent cells. Simultaneously, the single-site CuII species within Cu/Ce-MOF@M are reduced by upregulated glutathione in cancerous cells to CuI for catalyzing the click reaction, enabling homotypic cancer cell-activated in situ drug synthesis. Additionally, Cu/Ce-MOF@M exhibits oxidase and peroxidase mimicking activities, further enhancing catalytic cancer therapy. This study guides the reasonable design of highly active heterogeneous transition-metal catalysts for targeted bioorthogonal reactions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    用表面上的聚合物修饰细胞可以使它们在各种应用中获得或增强功能,其中原子转移自由基聚合(ATRP)由于其生物相容性而获得了显著的潜力。然而,从细胞表面特异性启动ATRP进行原位修饰仍然具有挑战性。这项研究建立了细菌表面引发的ATRP方法,并将其进一步应用于增强的Cr(VI)去除。通过用叠氮化物底物标记细胞表面很容易实现细胞表面特异性,在用叠氮化物-炔点击化学特异性锚定的炔基ATRP引发剂之后。然后,ATRP聚合从细胞表面开始,并将不同的聚合物成功地应用于原位改性。进一步的分析表明,用聚(4-乙烯基吡啶)和聚甲基丙烯酸钠改性希瓦氏菌可以提高重金属耐受性,并将Cr(VI)的去除率从0.088h-1提高到0.314h-1,提高了2.6倍。这项工作为细菌表面改性提供了新的思路,并将扩展ATRP在生物修复中的应用。
    Modifying cells with polymers on the surface can enable them to gain or enhance function with various applications, wherein the atom transfer radical polymerization (ATRP) has garnered significant potential due to its biocompatibility. However, specifically initiating ATRP from the cell surface for in-situ modification remains challenging. This study established a bacterial surface-initiated ATRP method and further applied it for enhanced Cr(VI) removal. The cell surface specificity was facilely achieved by cell surface labelling with azide substrates, following alkynyl ATRP initiator specifically anchoring with azide-alkyne click chemistry. Then, the ATRP polymerization was initiated from the cell surface, and different polymers were successfully applied to in-situ modification. Further analysis revealed that the modification of Shewanella oneidensis with poly (4-vinyl pyridine) and sodium polymethacrylate improved the heavy metal tolerance and enhanced the Cr(VI) removal rate of 2.6 times from 0.088 h-1 to 0.314 h-1. This work provided a novel idea for bacterial surface modification and would extend the application of ATRP in bioremediation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在环境条件下在靶残基处进行的肽和蛋白质的后期特异性和选择性多样化被认为是获得各种和丰富缀合物的最容易的途径。在这里,我们报告了使用烷基硫烷盐对半胱氨酸残基的正交修饰,在温和条件下具有优异的化学选择性和相容性,引入各种各样的功能结构。至关重要的是,多方面的生物缀合是通过可点击的手柄实现的,以结合结构上不同的功能分子。这两个步骤,一锅生物缀合法成功应用于标记牛血清白蛋白。因此,我们的技术是后期正交生物缀合的通用且强大的工具。
    Late-stage specific and selective diversifications of peptides and proteins performed at target residues under ambient conditions are recognized to be the most facile route to various and abundant conjugates. Herein, we report an orthogonal modification of cysteine residues using alkyl thianthreium salts, which proceeds with excellent chemoselectivity and compatibility under mild conditions, introducing a diverse array of functional structures. Crucially, multifaceted bioconjugation is achieved through clickable handles to incorporate structurally diverse functional molecules. This \"two steps, one pot\" bioconjugation method is successfully applied to label bovine serum albumin. Therefore, our technique is a versatile and powerful tool for late-stage orthogonal bioconjugation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目前小直径血管(ID<4mm)的替代金标准仍然是利用患者的自体血管,因为小直径血管移植物(SDVG)对弱内皮化的限制,内膜增生和低通畅。在这里,我们通过将工程化的内皮细胞囊泡应用于伪装血管移植物以增强血管重塑,创建了具有定制内皮化功能的SDVG。通过代谢糖工程用叠氮化物基团(ECVs-N3)修饰工程化的内皮细胞囊泡,以通过点击化学精确连接PCL-DBCO制成的血管移植物,从而制造ECVG(ECV-N3改进型SDVG),这有助于抑制血小板粘附和活化,促进ECs粘附和增强抗炎。此外,体内单细胞转录组分析表明,ECVG的细胞组成中ECs的比例超过了PCL,定制的内皮化能够将内皮细胞(ECs)转化为一些特定的ECs簇。其中一个特定的集群,Endo_C5群集,仅在ECVG中检测到。因此,我们的研究整合了来自天然ECs的ECVs-N3的工程化膜囊泡,通过规避活细胞的限制,在SDVG上进行定制的内皮化,并为构建损伤后血管重塑的替代内皮化提供了新的途径。
    Current gold standard for the replacement of small-diameter blood vessel (ID < 4 mm) is still to utilize the autologous vessels of patients due to the limitations of small-diameter vascular grafts (SDVG) on weak endothelialization, intimal hyperplasia and low patency. Herein, we create the SDVG with the tailored endothelialization by applying the engineered endothelial cell vesicles to camouflaging vascular grafts for the enhancement of vascular remodeling. The engineered endothelial cell vesicles were modified with azide groups (ECVs-N3) through metabolic glycoengineering to precisely link the vascular graft made of PCL-DBCO via click chemistry, and thus fabricating ECVG (ECVs-N3 modified SDVG), which assists inhibition of platelet adhesion and activation, promotion of ECs adhesion and enhancement of anti-inflammation. Furthermore, In vivo single-cell transcriptome analysis revealed that the proportion of ECs in the cell composition of ECVG surpassed that of PCL, and the tailored endothelialization enabled to convert endothelial cells (ECs) into some specific ECs clusters. One of the specific cluster, Endo_C5 cluster, was only detected in ECVG. Consequently, our study integrates the engineered membrane vesicles of ECVs-N3 from native ECs for tailored endothelialization on SDVG by circumventing the limitations of living cells, and paves a new way to construct the alternative endothelialization in vessel remodeling following injury.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:程序性细胞死亡配体-1(PD-L1)免疫检查点阻断(ICB)和免疫原性细胞死亡(ICD)诱导化疗的组合在癌症免疫治疗中显示出希望。然而,接受这种治疗的三阴性乳腺癌(TNBC)患者经常面临诸如全身毒性和低反应率等障碍,主要归因于免疫抑制肿瘤微环境(TME)。
    结果:在这项研究中,利用与生物正交点击化学组缀合的抗PD-L1肽(APP)开发PD-L1靶向治疗系统。最初,用叠氮化物修饰的糖处理TNBC以通过代谢糖工程将叠氮化物基团引入到肿瘤细胞表面上。开发了PD-L1靶向探针以使用磁共振/近红外荧光成像评估TNBC的PD-L1状态。随后,通过生物正交点击化学,采用酸性pH响应性前药来增强肿瘤积累,增强PD-L1靶向ICB,pH响应性DOX释放和诱导焦亡介导的TNBCICD。联合PD-L1靶向化学免疫疗法可有效逆转免疫耐受的TME,并引发强大的肿瘤特异性免疫反应。导致肿瘤进展的显著抑制。
    结论:我们的研究成功地设计了一个生物正交多功能治疗系统,它采用生物正交点击化学结合PD-L1靶向策略。这种创新的方法已被证明对TNBC的靶向成像和治疗干预都具有重要的前景。
    BACKGROUND: The combination of programmed cell death ligand-1 (PD-L1) immune checkpoint blockade (ICB) and immunogenic cell death (ICD)-inducing chemotherapy has shown promise in cancer immunotherapy. However, triple-negative breast cancer (TNBC) patients undergoing this treatment often face obstacles such as systemic toxicity and low response rates, primarily attributed to the immunosuppressive tumor microenvironment (TME).
    RESULTS: In this study, PD-L1-targeted theranostic systems were developed utilizing anti-PD-L1 peptide (APP) conjugated with a bio-orthogonal click chemistry group. Initially, TNBC was treated with azide-modified sugar to introduce azide groups onto tumor cell surfaces through metabolic glycoengineering. A PD-L1-targeted probe was developed to evaluate the PD-L1 status of TNBC using magnetic resonance/near-infrared fluorescence imaging. Subsequently, an acidic pH-responsive prodrug was employed to enhance tumor accumulation via bio-orthogonal click chemistry, which enhances PD-L1-targeted ICB, the pH-responsive DOX release and induction of pyroptosis-mediated ICD of TNBC. Combined PD-L1-targeted chemo-immunotherapy effectively reversed the immune-tolerant TME and elicited robust tumor-specific immune responses, resulting in significant inhibition of tumor progression.
    CONCLUSIONS: Our study has successfully engineered a bio-orthogonal multifunctional theranostic system, which employs bio-orthogonal click chemistry in conjunction with a PD-L1 targeting strategy. This innovative approach has been demonstrated to exhibit significant promise for both the targeted imaging and therapeutic intervention of TNBC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    令人信服的证据表明,异常的肠道菌群变化在炎症性肠病(IBD)的进展和发病机理中起着至关重要的作用。针对微生物群的益生菌治疗干预措施可能为治疗IBD提供替代途径。但是目前可用的益生菌通常具有低的肠道定植和有限的靶向能力。这里,我们开发了叠氮(N3)修饰的普鲁士蓝纳米酶(PB@N3)时空指导增强益生菌的靶向定植以减轻肠道炎症。首先,可点击的PB@N3靶向肠道炎症,同时,它清除活性氧(ROS)。随后,利用“点击”化学在时空上指导二苯并环辛炔(DBCO)修饰的罗伊乳杆菌DSM17938(LR@DBCO)的靶向定植。PB@N3和LR@DBCO之间的“点击”反应在体内和体外都具有出色的特异性和功效。尽管IBD的生理环境复杂,“点击”反应可以延长益生菌在肠道中的滞留时间。葡聚糖硫酸钠(DSS)诱导小鼠结肠炎模型,证明了PB@N3和LR@DBCO的组合有效地降低了ROS的水平,增强益生菌的定植,调节肠道菌群组成和功能,调节免疫谱,恢复肠屏障功能,并缓解肠道炎症。因此,PB@N3时空引导增强LR@DBCO的靶向定植为IBD提供了有希望的医学治疗策略。
    Convincing evidence suggests that aberrant gut microbiota changes play a critical role in the progression and pathogenesis of inflammatory bowel disease (IBD). Probiotic therapeutic interventions targeting the microbiota may provide alternative avenues to treat IBD, but currently available probiotics often suffer from low intestinal colonization and limited targeting capability. Here, we developed azido (N3)-modified Prussian blue nanozyme (PB@N3) spatio-temporal guidance enhances the targeted colonization of probiotics to alleviate intestinal inflammation. First, clickable PB@N3 targets intestinal inflammation, simultaneously, it scavenges reactive oxygen species (ROS). Subsequently, utilizing \"click\" chemistry to spatio-temporally guide targeted colonization of dibenzocyclooctyne (DBCO)-modified Lactobacillus reuteri DSM 17938 (LR@DBCO). The \"click\" reaction between PB@N3 and LR@DBCO has excellent specificity and efficacy both in vivo and in vitro. Despite the complex physiological environment of IBD, \"click\" reaction can prolong the retention time of probiotics in the intestine. Dextran sulfate sodium (DSS)-induced colitis mice model, demonstrates that the combination of PB@N3 and LR@DBCO effectively mitigates levels of ROS, enhances the colonization of probiotics, modulates intestinal flora composition and function, regulates immune profiles, restores intestinal barrier function, and alleviates intestinal inflammation. Hence, PB@N3 spatio-temporal guidance enhances targeted colonization of LR@DBCO provides a promising medical treatment strategy for IBD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:目前,金属核素标记放射性药物的合成途径主要分为两个步骤:把螯合剂和靶分子连接起来,第二,将金属核素标记到螯合剂上。然而,标记金属核素的反应的第二步需要高温(90-100°C),它倾向于使目标分子变性和失活,导致生物活动的丧失,尤其是瞄准能力。一个可行的解决方案可能是点击化学标记法,其包括使金属核素与螯合剂反应以产生中间体,然后经由点击化学中间体和目标分子-炔烃化合物合成放射性药剂。在这项研究中,通过177Lu-DOTA-N3与前列腺特异性膜抗原(PSMA)-炔化合物的点击化学,合成了177Lu标记的PSMA靶向分子探针,并评估了其从血液中清除并迅速分布到组织和器官的潜力,实现高目标/非目标比率。177Lu-PSMA-617用作在合成效率和PSMA靶向能力方面进行比较的类似物。
    结果:通过177Lu-DOTA-N3与PSMA-炔化合物的点击化学成功合成了一种新型的177Lu标记的PSMA放射性配体,缩写为177Lu-DOTA-CC-PSMA,通过SepPakC18柱纯化时,放射化学收率为77.07%±0.03%(n=6),放射化学纯度为97.62%±1.49%(n=6)。值得注意的是,177Lu-DOTA-CC-PSMA被表征为在室温下表现出稳定性和良好的药代动力学性质的亲水性化合物,例如22Rv1荷瘤小鼠的异种移植物内的优异摄取(0.5h时的19.75±3.02%ID/g)和保留(24h时的9.14±3.16%ID/g)。SPECT/CT显像显示肾脏和膀胱的放射性在24小时后基本消除,而177Lu-DOTA-CC-PSMA进一步富集并保留在表达PSMA的肿瘤中,导致较高的目标/非目标比率。
    结论:这项研究证明了点击化学可以统一金属放射性药物的合成,发现177Lu-DOTA-CC-PSMA作为PSMA靶向的放射性配体具有快速清除和适当的化学稳定性。
    BACKGROUND: Currently, the synthesis pathway of metal nuclide-labeled radiopharmaceuticals is mainly divided into two steps: first, connecting the chelator with the target molecule, and second, labeling the metal nuclide to the chelator. However, the second step of the reaction to label the metal nuclide requires high temperature (90-100 °C), which tends to denature and inactivate the target molecule, leading to loss of biological activities, especially the targeting ability. A feasible solution may be the click chemistry labeling method, which consists of reacting a metal nuclide with a chelating agent to generate an intermediate and then synthesizing a radiopharmaceutical agent via the click chemistry intermediate and the target molecule-alkyne compound. In this study, through the click chemistry of 177Lu-DOTA-N3 with prostate-specific membrane antigen (PSMA)-alkyne compound, 177Lu-labeled PSMA-targeted molecular probe was synthesized and evaluated for its potential to be cleared from the bloodstream and rapidly distributed to tissues and organs, achieving a high target/non-target ratio. 177Lu-PSMA-617 was utilized as an analogue for comparison in terms of synthesizing efficiency and PSMA-targeting ability.
    RESULTS: A novel 177Lu-labeled PSMA radioligand was successfully synthesized through the click chemistry of 177Lu-DOTA-N3 with PSMA-alkyne compound, and abbreviated as 177Lu-DOTA-CC-PSMA, achieving a radiochemical yield of 77.07% ± 0.03% (n = 6) and a radiochemical purity of 97.62% ± 1.49% (n = 6) when purified by SepPak C18 column. Notably, 177Lu-DOTA-CC-PSMA was characterized as a hydrophilic compound that exhibited stability at room temperature and commendable pharmacokinetic properties, such as the superior uptake (19.75 ± 3.02%ID/g at 0.5 h) and retention (9.14 ± 3.16%ID/g at 24 h) within xenografts of 22Rv1 tumor-bearing mice. SPECT/CT imaging indicated that radioactivity in both kidneys and bladder was essentially eliminated after 24 h, while 177Lu-DOTA-CC-PSMA was further enriched and retained in PSMA-expressing tumors, resulting in the high target/non-target ratio.
    CONCLUSIONS: This study demonstrated the potential of click chemistry to unify the synthesis of metal radiopharmaceuticals, and 177Lu-DOTA-CC-PSMA was found for rapid clearance and appropriate chemical stability as a PSMA-targeted radioligand.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    活急性脑切片为人脑病理学唾液酸化成像提供了实用平台。然而,急性脑片的有限寿命阻碍了代谢聚糖标记(MGL)的使用,这需要长期孵育可点击的非天然糖,如N-叠氮基乙酰甘露糖胺(ManNAz),以代谢方式将叠氮化物掺入唾液酸聚糖中。这里,我们报告了MGL(fMGL)的快速变体,其中通过绕过唾液酸生物合成途径中的瓶颈步骤,ManNAz-6-磷酸能够在12小时内有效掺入叠氮糖,然后用荧光团点击标记,并在小鼠和人类患者的急性脑切片中成像唾液酸蛋白聚糖。在神经节胶质瘤的临床样本中,基于fMGL的成像显示星形胶质细胞样肿瘤细胞而非神经元样肿瘤细胞唾液酸化的特异性上调。此外,fMGL与点击扩展显微镜集成,可对大脑切片中的sialoglycans进行高分辨率成像。fMGL策略应该在聚糖的组织成像和手术病理学中找到广泛的应用。
    Living acute brain slices provide a practical platform for imaging sialylation in human brain pathology. However, the limited lifespan of acute brain slices has impeded the use of metabolic glycan labeling (MGL), which requires long-term incubation of clickable unnatural sugars such as N-azidoacetylmannosamine (ManNAz) to metabolically incorporate azides into sialoglycans. Here, we report a fast variant of MGL (fMGL), in which ManNAz-6-phosphate enables efficient azidosugar incorporation within 12 h by bypassing the bottleneck step in the sialic acid biosynthesis pathway, followed by click-labeling with fluorophores and imaging of sialoglycans in acute brain slices from mice and human patients. In the clinical samples of ganglioglioma, fMGL-based imaging reveals specific upregulation of sialylation in astrocyte-like but not neuron-like tumor cells. In addition, fMGL is integrated with click-expansion microscopy for high-resolution imaging of sialoglycans in brain slices. The fMGL strategy should find broad applications in the tissue imaging of glycans and surgical pathology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    天然环二核苷酸(CDN)是参与细菌止血的第二信使,人类先天免疫,和细菌抗噬菌体免疫。合成的CDN及其类似物是关键的分子探针和潜在的免疫治疗剂。几种CDN类似物正在进行抗肿瘤免疫疗法的临床研究。已经开发并报道了无数的合成方法用于制备CDN及其类似物。然而,大多数协议需要多个步骤,并且一次仅制备一种CDN或其类似物。在这项研究中,设计并开发了一种基于包含1'-炔基的大环磷酸核糖骨架的策略,以通过点击化学制备包含三唑基C-核苷的CDN类似物。点击化学和次磺酰化级联对大环骨架的组合应用扩大了CDN类似物的多样性。这种大环骨架策略快速有效地提供CDN类似物,以促进微生物学研究,免疫学,和免疫疗法。
    Natural cyclic dinucleotide (CDN) is the secondary messenger involved in bacterial hemostasis, human innate immunity, and bacterial antiphage immunity. Synthetic CDN and its analogues are key molecular probes and potential immunotherapeutic agents. Several CDN analogues are under clinical research for antitumor immunotherapy. A myriad of synthetic methods have been developed and reported for the preparation of CDN and its analogues. However, most of the protocols require multiple steps, and only one CDN or its analogue is prepared at a time. In this study, a strategy based on a macrocyclic ribose phosphate skeleton containing a 1\'-alkynyl group was designed and developed to prepare CDN analogues containing triazolyl C-nucleosides by click chemistry. Combinatorial application of click chemistry and the sulfenylation cascade to the macrocyclic skeleton expanded the diversity of the CDN analogues. This macrocyclic skeleton strategy rapidly and efficiently provides CDN analogues to facilitate research on microbiology, immunology, and immunotherapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号