brain disorder

脑部疾病
  • 文章类型: Journal Article
    功能网络(FN)分析在发现对脑功能的见解和理解各种脑部疾病的病理生理学中起着关键作用。本文重点介绍了从功能磁共振成像(fMRI)数据中导出脑FN的经典和先进方法。我们系统地回顾了他们的基本原则,优势,缺点,和相互关系,包括静态和动态FN提取方法。在静态FN提取的背景下,我们提出了假设驱动的方法,如基于感兴趣区域(ROI)的方法以及数据驱动的方法,包括矩阵分解,聚类,和深度学习。对于动态FN提取,关于时变FN的估计和FN状态的后续计算,研究了基于窗口和无窗口的方法。我们还讨论了各种方法的适用范围和未来改进的途径。
    Functional network (FN) analyses play a pivotal role in uncovering insights into brain function and understanding the pathophysiology of various brain disorders. This paper focuses on classical and advanced methods for deriving brain FNs from functional magnetic resonance imaging (fMRI) data. We systematically review their foundational principles, advantages, shortcomings, and interrelations, encompassing both static and dynamic FN extraction approaches. In the context of static FN extraction, we present hypothesis-driven methods such as region of interest (ROI)-based approaches as well as data-driven methods including matrix decomposition, clustering, and deep learning. For dynamic FN extraction, both window-based and windowless methods are surveyed with respect to the estimation of time-varying FN and the subsequent computation of FN states. We also discuss the scope of application of the various methods and avenues for future improvements.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目的:脑部疾病是全球主要的死亡率问题之一,它们的早期发现对治愈至关重要。机器学习,特别是深度学习,是一种越来越多地用于检测和诊断脑部疾病的技术。我们的目标是提供该领域的定量文献计量分析,以告知研究人员未来可以告知其研究方向的趋势。
    方法:我们进行了文献计量分析,以使用机器学习和深度学习对脑部疾病的检测和诊断进行概述。我们的文献计量分析包括从Scopus数据库收集的1550篇关于使用机器学习和深度学习进行自动化脑部疾病检测和诊断的文章,发表于2015年至2023年5月。在Biblioshiny和VOSviewer平台的帮助下,进行了全面的文献计量分析。在研究中分析了引文分析和各种合作措施。
    结果:根据一项研究,据报道,2022年的研究最多,比前几年持续增长。引用的大多数作者都专注于在该领域有效的多类分类和创新的卷积神经网络模型。一项关键词分析显示,在几种脑部疾病类型中,老年痴呆症,自闭症,和帕金森病受到了最大的关注。就作者和研究所而言,美国,中国,和印度是最合作的国家之一。我们根据我们的发现制定了未来的研究议程,以帮助推进机器学习和深度学习在大脑疾病检测和诊断方面的研究。
    结论:总之,我们的定量文献计量分析提供了有关该领域趋势的有用见解,并指出了将机器学习和深度学习应用于脑部疾病检测和诊断的潜在方向。

    OBJECTIVE: Brain disorders are one of the major global mortality issues, and their early detection is crucial for healing. Machine learning, specifically deep learning, is a technology that is increasingly being used to detect and diagnose brain disorders. Our objective is to provide a quantitative bibliometric analysis of the field to inform researchers about trends that can inform their Research directions in the future.
    METHODS: We carried out a bibliometric analysis to create an overview of brain disorder detection and diagnosis using machine learning and deep learning. Our bibliometric analysis includes 1550 articles gathered from the Scopus database on automated brain disorder detection and diagnosis using machine learning and deep learning published from 2015 to May 2023. A thorough bibliometric análisis is carried out with the help of Biblioshiny and the VOSviewer platform. Citation analysis and various measures of collaboration are analyzed in the study.
    RESULTS: According to a study, maximum research is reported in 2022, with a consistent rise from preceding years. The majority of the authors referenced have concentrated on multiclass classification and innovative convolutional neural network models that are effective in this field. A keyword analysis revealed that among the several brain disorder types, Alzheimer\'s, autism, and Parkinson\'s disease had received the greatest attention. In terms of both authors and institutes, the USA, China, and India are among the most collaborating countries. We built a future research agenda based on our findings to help progress research on machine learning and deep learning for brain disorder detection and diagnosis.
    CONCLUSIONS: In summary, our quantitative bibliometric analysis provides useful insights about trends in the field and points them to potential directions in applying machine learning and deep learning for brain disorder detection and diagnosis.

    .
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    静息状态功能MRI(rs-fMRI)越来越多地用于检测由脑部疾病引起的功能连接模式的改变,从而促进脑病理学的客观量化。现有研究通常使用各种机器/深度学习方法提取功能磁共振成像特征,但所产生的成像生物标志物往往难以解释.此外,大脑作为具有许多认知/拓扑模块的模块化系统运行,其中每个模块包含与其他模块中的ROI稀疏连接的密集互连感兴趣区域(ROI)的子集。然而,目前的方法不能有效地表征大脑模块化。本文提出了一种模块化约束的动态表示学习(MDRL)框架,用于使用rs-fMRI进行可解释的脑部疾病分析。MDRL由三部分组成:(1)动态图构造,(2)面向动态特征学习的模块化约束时空图神经网络(MSGNN),(3)预测和生物标志物检测。特别是,MSGNN旨在学习功能磁共振成像的时空动态表示,受3个功能模块的约束(即,中央执行网络,显著性网络,和默认模式网络)。为了增强学习特征的辨别能力,我们鼓励MSGNN重建输入图的网络拓扑。在两个公共数据集和一个私有数据集(总共1,155名受试者)上的实验结果验证了我们的MDRL在基于fMRI的脑部疾病分析中优于几种最先进的方法。检测到的fMRI生物标志物具有良好的可解释性,可以潜在地用于改善临床诊断。
    Resting-state functional MRI (rs-fMRI) is increasingly used to detect altered functional connectivity patterns caused by brain disorders, thereby facilitating objective quantification of brain pathology. Existing studies typically extract fMRI features using various machine/deep learning methods, but the generated imaging biomarkers are often challenging to interpret. Besides, the brain operates as a modular system with many cognitive/topological modules, where each module contains subsets of densely inter-connected regions-of-interest (ROIs) that are sparsely connected to ROIs in other modules. However, current methods cannot effectively characterize brain modularity. This paper proposes a modularity-constrained dynamic representation learning (MDRL) framework for interpretable brain disorder analysis with rs-fMRI. The MDRL consists of 3 parts: (1) dynamic graph construction, (2) modularity-constrained spatiotemporal graph neural network (MSGNN) for dynamic feature learning, and (3) prediction and biomarker detection. In particular, the MSGNN is designed to learn spatiotemporal dynamic representations of fMRI, constrained by 3 functional modules (i.e., central executive network, salience network, and default mode network). To enhance discriminative ability of learned features, we encourage the MSGNN to reconstruct network topology of input graphs. Experimental results on two public and one private datasets with a total of 1,155 subjects validate that our MDRL outperforms several state-of-the-art methods in fMRI-based brain disorder analysis. The detected fMRI biomarkers have good explainability and can be potentially used to improve clinical diagnosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    纳米抗体(Nbs)由于其独特的特性而在分子成像中具有重要的潜力。然而,当涉及到大脑成像时,有一些挑战需要克服。为了解决这些障碍,需要合作努力和跨学科研究。本文旨在提高认识并鼓励来自各个领域的研究人员之间的合作,以找到使用Nbs进行有效脑成像的解决方案。通过促进合作和知识共享,我们可以在克服现有局限性方面取得进展,并为将来改进分子成像技术铺平道路。
    Nanobodies (Nbs) hold significant potential in molecular imaging due to their unique characteristics. However, there are challenges to overcome when it comes to brain imaging. To address these obstacles, collaborative efforts and interdisciplinary research are needed. This article aims to raise awareness and encourage collaboration among researchers from various fields to find solutions for effective brain imaging using Nbs. By fostering cooperation and knowledge sharing, we can make progress in overcoming the existing limitations and pave the way for improved molecular imaging techniques in the future.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Review
    中枢神经系统严重依赖神经递质(NTM),和NTM失衡与广泛的神经系统疾病有关。因此,可靠检测技术的发展对于推进大脑研究至关重要。这篇综述提供了对金属有机骨架(MOFs)的全面分析,过渡金属氧化物,和MOFs衍生的TMO(MOFs/TMO)作为电化学(EC)传感器的材料,以检测关键的NTM为目标,特别是多巴胺(DA),肾上腺素(EP),和血清素(SR)。MOFs和TMO的独特属性和多样化家族,以及他们的纳米结构杂种,在EC传感的背景下进行了讨论。审查还解决了检测非关税壁垒的挑战,并提出了解决这些障碍的系统方法。尽管对用于DA检测的MOFs和基于TMOs的EC传感器进行了大量研究,这篇综述强调了文献中关于基于MOFs/TMOs的EC传感器,特别是用于EP和SR检测的差距,以及对用MOFs修饰的基于微针(MNs)的EC传感器的有限研究,TMO,和MOFs/TMO用于NTM检测。这篇综述作为鼓励研究人员进一步探索MOFs潜在应用的基础,TMO,以及基于MOFs/TMOs的EC传感器,用于神经系统疾病和其他与NTM失衡相关的健康状况。
    The central nervous system relies heavily on neurotransmitters (NTMs), and NTM imbalances have been linked to a wide range of neurological conditions. Thus, the development of reliable detection techniques is essential for advancing brain studies. This review offers a comprehensive analysis of metal-organic frameworks (MOFs), transition metal oxides (TMOs), and MOFs-derived TMOs (MOFs/TMOs) as materials for electrochemical (EC) sensors targeting the detection of key NTMs, specifically dopamine (DA), epinephrine (EP), and serotonin (SR). The unique properties and diverse families of MOFs and TMOs, along with their nanostructured hybrids, are discussed in the context of EC sensing. The review also addresses the challenges in detecting NTMs and proposes a systematic approach to tackle these obstacles. Despite the vast amount of research on MOFs and TMOs-based EC sensors for DA detection, the review highlights the gaps in the literature for MOFs/TMOs-based EC sensors specifically for EP and SR detection, as well as the limited research on microneedles (MNs)-based EC sensors modified with MOFs, TMOs, and MOFs/TMOs for NTMs detection. This review serves as a foundation to encourage researchers to further explore the potential applications of MOFs, TMOs, and MOFs/TMOs-based EC sensors in the context of neurological disorders and other health conditions related to NTMs imbalances.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    静息状态功能磁共振成像(rs-fMRI)有助于表征在静息状态下人脑中发生的区域相互作用。现有研究通常试图探索使用机器/深度学习技术最好地预测脑部疾病进展的fMRI生物标志物。以前的fMRI研究表明,基于学习的方法通常需要大量标记的训练数据,限制了它们在临床实践中的应用,其中注释数据通常是耗时且费力的。为此,我们提出了一种无监督对比图学习(UCGL)框架,用于基于fMRI的脑部疾病分析,其中一个借口模型被设计为使用未标记的训练数据生成信息丰富的fMRI表示,其次是模型微调,以执行下游疾病识别任务。具体来说,在借口模型中,我们首先设计了双水平fMRI增强策略,通过增强血氧水平依赖性(BOLD)信号来增加样本量,然后采用两个并行图卷积网络以无监督对比学习的方式进行fMRI特征提取。这个借口模型可以在大规模fMRI数据集上进行优化,不需要标记的训练数据。该模型以面向任务的学习方式在待分析的fMRI数据上进一步微调以用于下游疾病检测。我们在三个rs-fMRI数据集上评估了所提出的方法,用于跨站点和跨数据集学习任务。实验结果表明,UCGL在自动诊断三种脑部疾病方面优于几种最先进的方法(即,重度抑郁症,自闭症谱系障碍,和阿尔茨海默病)与rs-fMRI数据。
    Resting-state functional magnetic resonance imaging (rs-fMRI) helps characterize regional interactions that occur in the human brain at a resting state. Existing research often attempts to explore fMRI biomarkers that best predict brain disease progression using machine/deep learning techniques. Previous fMRI studies have shown that learning-based methods usually require a large amount of labeled training data, limiting their utility in clinical practice where annotating data is often time-consuming and labor-intensive. To this end, we propose an unsupervised contrastive graph learning (UCGL) framework for fMRI-based brain disease analysis, in which a pretext model is designed to generate informative fMRI representations using unlabeled training data, followed by model fine-tuning to perform downstream disease identification tasks. Specifically, in the pretext model, we first design a bi-level fMRI augmentation strategy to increase the sample size by augmenting blood-oxygen-level-dependent (BOLD) signals, and then employ two parallel graph convolutional networks for fMRI feature extraction in an unsupervised contrastive learning manner. This pretext model can be optimized on large-scale fMRI datasets, without requiring labeled training data. This model is further fine-tuned on to-be-analyzed fMRI data for downstream disease detection in a task-oriented learning manner. We evaluate the proposed method on three rs-fMRI datasets for cross-site and cross-dataset learning tasks. Experimental results suggest that the UCGL outperforms several state-of-the-art approaches in automated diagnosis of three brain diseases (i.e., major depressive disorder, autism spectrum disorder, and Alzheimer\'s disease) with rs-fMRI data.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Editorial
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    大脑中β-淀粉样蛋白斑块的积累导致阿尔茨海默病(AD),神经退行性疾病.AD的永久性治疗尚不可用。目前的药物选择只能减缓其进步。然而,纳米技术已被证明在医学应用中是有利的。它对AD治疗有很大的潜力,特别是在诊断病情和提供替代治疗过程。在这次审查中,我们概述了纳米药物在治疗AD方面的进展和益处。用于诊断和监测AD和其他中枢神经系统(CNS)疾病的治疗干预的前瞻性纳米药物可能是临床上可获得的,说服这一领域调查的发展。
    The buildup of beta-amyloid plaques in the brain results in Alzheimer\'s disease (AD), a neurodegenerative condition. A permanent treatment for AD is not yet available. Only a slowing down of its advancement is possible with the current pharmaceutical options. Nevertheless, nanotechnology has proven to be advantageous in medical applications. It has a lot of potential for AD therapy, particularly in diagnosing the condition and providing an alternative course of treatment. In this review, we outline the developments and benefits of nanomedicines in treating AD. Prospective nanomedicines for diagnosing and surveillance therapeutic interventions for AD and other diseases of the central nervous system (CNS) may be clinically accessible, persuading the development of investigation in this field.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    功能连接网络(FCN)分析对脑疾病的诊断具有指导意义,如轻度认知障碍(MCI)和重度抑郁症(MDD)在其早期阶段。作为FCN分析的关键步骤,特征表征为寻找脑疾病的潜在生物标志物提供了基础。在以往的研究中,通常从FCN中提取不同的节点统计信息(例如局部效率和局部聚类系数)作为诊断/分类任务的特征,它可以在节点级别上专门定位疾病相关区域,从而帮助我们了解脑部疾病的神经发育根源。然而,每个节点统计量只考虑一种特定的网络属性,具有片面性和局限性。因此,用一个统计量表示一个节点是不完整的。要解决此问题,我们提出了一种新的方案,从估计的FCN中联合选择多个节点统计信息进行自动分类,称为多节点统计特征选择(MNSFS)。具体来说,我们首先从相同的节点中提取多个统计信息,并将每种统计信息分配到一组中。然后,稀疏组最小绝对收缩和选择运算符(sgLASSO)用于选择组(节点)和组中的统计信息,以获得更好的分类性能。这种技术使我们能够同时定位有区别的大脑区域,以及与这些大脑区域相关的具体统计数据,使分类结果更具解释性。我们在两个公共数据库上进行了我们的计划,以从正常对照中识别MCI和MDD的受试者。实验结果表明,该方案在基准数据集上具有较好的分类精度和特征解释能力。
    Functional connectivity networks (FCN) analysis is instructive for the diagnosis of brain diseases, such as mild cognitive impairment (MCI) and major depressive disorder (MDD) at their early stages. As the critical step of FCN analysis, feature representation provides the basis for finding potential biomarkers of brain diseases. In previous studies, different node statistics (e.g. local efficiency and local clustering coefficients) are usually extracted from FCNs as features for the diagnosis/classification task, which can specifically locate disease-related regions on the node level, so as to help us understand the neurodevelopmental roots of brain disorders. However, each node statistic is proposed only considering a kind of specific network property, which has one-sidedness and limitations. As a result, it is incomplete to represent a node with only one statistic. To resolve this issue, we put forward a novel scheme to select multiple node statistics jointly from the estimated FCNs for automated classification, called multiple node statistics feature selection (MNSFS). Specifically, we first extract multiple statistics from the same nodes and assign each kind of statistic into a group. Then, sparse group least absolute shrinkage and selection operator (sgLASSO) is used to select groups (nodes) and statistics in the groups towards a better classification performance. Such a technique enables us to simultaneously locate the discriminative brain regions, as well as the specific statistics associated with these brain regions, making the classification results more interpretable. We conducted our scheme on two public databases for identifying subjects with MCI and MDD from normal controls. Experimental results show that the proposed scheme achieves superior classification accuracy and features interpreted on the benchmark datasets.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    神经调节技术是目前发展最为迅速的医学领域之一,见证调制技术类型的激增和适应症的不断扩大。因此,成千上万的功能性神经系统疾病患者受益于世界各地该领域的进步。然而,一些挑战仍然存在,例如,缺乏对神经调节机制的透彻了解,关于神经调节的最佳目标的长期争议,缺乏可靠的疗效预测因子,以及术后编程的繁琐和低效模式。我们预计,随着医学技术的不断进步和脑部疾病的神经网络机制的逐步揭示,这些问题将得到解决。更加个性化,精确,智能神经调制技术将是未来发展的主要方向。在这里,我们回顾并评论了神经调节技术的发展,其应用的现状,及其发展前景。
    Neuromodulation technology is one of the medical fields currently experiencing the most rapid development, witnessing a surge in the types of modulation techniques and a constant expansion of indications. Consequently, hundreds of thousands of patients with functional neurological disorders have benefited from the advancements in the field all over the world. Nevertheless, some challenges remain, for exmaple, the lack of a thorough understanding of the mechanism of neuromodulation, the long-standing controversy over the optimal targets of neuromodulation, the lack of reliable efficacy predictors, and the cumbersome and inefficient mode of postoperative programming. We anticipate that these issues will be resolved with the continued advancement in medical technology and the gradual revelation of the neural network mechanism of brain disorders. More individualized, precise, and intelligent neuromodulation technology will be the main direction of development in the future. Herein, we reviewed and commented on the evolution of neuromodulation technology, the current status of its applications, and its prospective development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号