Nanocomposite

纳米复合材料
  • 文章类型: Journal Article
    当前的研究提出了一种基于ZnO/Co3O4纳米复合材料修饰的丝网印刷电极(ZnO/Co3O4NC/SPE)的简单而灵敏的传感器的创建,用于测定左旋多巴。在ZnO/Co3O4NC/SPE,观察到左旋多巴溶液在pH6.0磷酸盐缓冲溶液(PBS)中的氧化峰,该氧化峰更加分辨且更加增强。使用差分脉冲伏安法(DPV)测量左旋多巴,其显示出优异的线性范围(0.001-800.0μM)和检测限(0.81nM)。干扰的存在不影响左旋多巴在ZnO/Co3O4NC/SPE上的电化学响应,显示高选择性。使用制造的传感器已成功检测到真实样品中的左旋多巴。
    The current study presents the creation of a straightforward and sensitive sensor based on ZnO/Co3O4 nanocomposite modified screen-printed electrode (ZnO/Co3O4NC/SPE) for levodopa determination. At ZnO/Co3O4NC/SPE, an oxidative peak for levodopa solution in pH 6.0 phosphate buffer solution (PBS) were seen that were both more resolved and more enhanced. Levodopa was measured using differential pulse voltammetry (DPV), which showed an excellent linear range (0.001-800.0 μM) and detection limit (0.81 nM). The presence of interference did not affect the electrochemical response of levodopa at ZnO/Co3O4NC/SPE, demonstrating high selectivity. Levodopa in a real samples have been successfully detected using the manufactured sensor.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目前,高性能传感平台的开发研究已经增加,以满足分析和检测的需求。在这项研究中,我们开发了一种新型的表面增强拉曼散射(SERS)芯片,该芯片由共价有机框架(COF)-银纳米颗粒(AgNPs)纳米复合材料组成,该纳米复合材料是通过将获得的COF和AgNPs超声混合的一步法制备的。所制造的芯片表现出高灵敏度和可重复的SERS效应。实际应用结果表明,该芯片灵敏度高,可靠性高,能够检测DNA碱基(腺嘌呤),符合0.01pM至1nM范围内的方程,R平方为0.97253,检测限为〜0.026pM(信噪比(S/N)=3)。因此,所提出的SERS系统在生物测定中具有潜在的应用。
    Currently, research in the development of high-performance sensing platforms has increased to fulfill the needs of analysis and detection. In this study, we developed a novel type of surface-enhanced Raman scattering (SERS) chip composed of a covalent organic framework (COF)-silver nanoparticles (AgNPs) nanocomposite, and this nanocomposite was fabricated by a one-step method of ultrasonically mixing the obtained COF and AgNPs. The fabricated chip exhibited high sensitivity and repeatable SERS effects. Practical application results showed that the chip was highly sensitive and reliable and capable of detecting DNA bases (adenine) to fit an equation in the range from 0.01 pM to 1 nM, with an R-square of 0.97253 and a detection limit of ~0.026 pM (signal-to-noise ratio (S/N) = 3). Therefore, the proposed SERS system has potential applications in biological assays.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    智能聚合物纳米复合材料是多组分和多功能材料,在各种应用中显示出巨大的潜力。然而,为了表现出智能特征,如适应性,可重构性和动态属性,这些材料通常需要溶剂或加热环境,以促进聚合物链和纳米颗粒的流动性,使他们的应用程序在日常设置不切实际。在这里,智能偶氮聚合物纳米复合材料在无溶剂中有效地发挥作用,显示了基于通过切换流温度(Tfs)的光控可逆固-流体转变的室温环境。通过Au纳米颗粒的接枝合成了一系列纳米复合材料,Au纳米棒,量子点,或具有光敏偶氮聚合物的超顺磁性纳米颗粒。利用偶氮基团的可逆顺反光异构化,偶氮聚合物纳米复合材料在固体(Tf高于室温)和流体(Tf低于室温)状态之间转变。这种光控的可逆固液跃迁赋予了纳米图案的重写,校正纳米级缺陷,复杂多尺度结构的重新配置,智能光学器件的设计。这些发现强调了Tf可转换的聚合物纳米复合材料是开发无溶剂智能纳米材料的有希望的候选人,室温条件。
    Intelligent polymer nanocomposites are multicomponent and multifunctional materials that show immense potential across diverse applications. However, to exhibit intelligent traits such as adaptability, reconfigurability and dynamic properties, these materials often require a solvent or heating environment to facilitate the mobility of polymer chains and nanoparticles, rendering their applications in everyday settings impractical. Here intelligent azopolymer nanocomposites that function effectively in a solvent-free, room-temperature environment based on photocontrolled reversible solid-fluid transitions via switching flow temperatures (Tfs) are shown. A range of nanocomposites is synthesized through the grafting of Au nanoparticles, Au nanorods, quantum dots, or superparamagnetic nanoparticles with photoresponsive azopolymers. Leveraging the reversible cis-trans photoisomerization of azo groups, the azopolymer nanocomposites transition between solid (Tf above room temperature) and fluid (Tf below room temperature) states. Such photocontrolled reversible solid-fluid transitions empower the rewriting of nanopatterns, correction of nanoscale defects, reconfiguration of complex multiscale structures, and design of intelligent optical devices. These findings highlight Tf-switchable polymer nanocomposites as promising candidates for the development of intelligent nanomaterials operative in solvent-free, room-temperature conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    表面增强拉曼光谱(SERS)是一种有前途的高灵敏度分子指纹检测技术。然而,开发无标签的SERS纳米复合材料,高度敏感,选择性,稳定,和可重复使用的气态挥发性有机化合物(VOCs)检测仍然是一个挑战。这里,我们报道了一种新型TiO2NTs/AuNPs@ZIF-8纳米复合材料,用于VOCs的超灵敏SERS检测。具有较大比表面积的三维TiO2纳米管结构为AuNP的负载提供了丰富的位点,具有优异的局部表面等离子体共振(LSPR)效应,进一步导致形成大量的SERS活跃热点。外部包裹的多孔MOF结构将更多的气态VOC分子吸附到贵金属表面上。在物理和化学增强的协同机制下,可以获得更好的SERS增强效果。通过优化实验条件,苯乙酮的SERS检测限,常见的呼出的VOC,低至10-11M。并且来自同一纳米复合材料表面上不同点的SERS信号强度的相对标准偏差为4.7%。苯乙酮气体达到1分钟的响应,信号在4分钟内达到稳定。在紫外线照射下,表面吸附的苯乙酮可以在40分钟内完全降解。实验结果表明,该纳米复合材料具有良好的检测灵敏度,重复性,选择性,响应速度,和可重用性,使其成为有前途的气体挥发性有机化合物的传感器。
    Surface-enhanced Raman spectroscopy (SERS) is a promising and highly sensitive molecular fingerprint detection technology. However, the development of SERS nanocomposites that are label-free, highly sensitive, selective, stable, and reusable for gaseous volatile organic compounds (VOCs) detection remains a challenge. Here, we report a novel TiO2NTs/AuNPs@ZIF-8 nanocomposite for the ultrasensitive SERS detection of VOCs. The three-dimensional TiO2 nanotube structure with a large specific surface area provides abundant sites for the loading of Au NPs, which possess excellent local surface plasmon resonance (LSPR) effects, further leading to the formation of a large number of SERS active hotspots. The externally wrapped porous MOF structure adsorbs more gaseous VOC molecules onto the noble metal surface. Under the synergistic mechanism of physical and chemical enhancement, a better SERS enhancement effect can be achieved. By optimizing experimental conditions, the SERS detection limit for acetophenone, a common exhaled VOC, is as low as 10-11 M. And the relative standard deviation of SERS signal intensity from different points on the same nanocomposite surface is 4.7%. The acetophenone gas achieves a 1 min response and the signal reaches stability in 4 min. Under UV irradiation, the surface-adsorbed acetophenone can be completely degraded within 40 min. The experimental results demonstrate that this nanocomposite has good detection sensitivity, repeatability, selectivity, response speed, and reusability, making it a promising sensor for gaseous VOCs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    光催化抗菌剂,作为新兴的先进氧化抗菌材料,具有价格低廉、抗菌性能持久的优点。然而,随着催化剂越来越趋向于纳米级尺寸,催化剂回收的环境挑战变得更加明显。在本文中,我们建议利用一维碳纤维作为基材,采用成核剂方法诱导二氧化钛(TiO2)在纤维表面生长。此外,材料的带隙通过氢煅烧进行改性,从而获得具有可见光驱动能力的分级黑色TiO2/碳纤维复合材料。通过扫描电子显微镜(SEM)对材料进行表征,X射线衍射(XRD)透射电子显微镜(TEM),和X射线光电子能谱(XPS)。结果表明,当黑色氢化TiO2与碳纤维复合时,形成肖特基异质结,从而有效提高了复合材料的光催化效果。值得注意的是,黑色TiO2/碳纤维复合材料在150min内对亚甲基蓝的降解率达到96.25%,而大肠杆菌的灭化率(E.大肠杆菌)在0.5小时内达到97.58%,并在60分钟内达到完全失活。
    Photocatalytic antimicrobials, as emerging advanced oxidative antimicrobial materials, have the advantages of low price and long-lasting antimicrobial properties. Nevertheless, with catalysts increasingly trending toward nanoscale dimensions, the environmental challenge of catalyst recycling becomes more pronounced. In this paper, we propose utilizing one-dimensional carbon fiber as a substrate, employing the nucleating agent method to induce Titanium dioxide (TiO2) growth on the fiber surface. Furthermore, the material\'s band gap underwent modification through hydrogen calcination, thus resulting in the attainment of hierarchical black TiO2/carbon fiber composites with visible light-driven capabilities. The characterization of the materials was conducted via scanning electron microscope (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The results revealed that when the black hydrogenated TiO2 was composited with carbon fiber, the Schottky heterojunction was formed, and thus effectively improved the photocatalytic effect of the composites. Notably, the degradation rate of methylene blue achieved 96.25% within 150 min when utilizing black TiO2/carbon fiber composites, while the inactivation rate of Escherichia coli (E. coli) reached 97.58% within 0.5 h and attained complete inactivation within 60 min.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    近年来,物联网(IoT)的进步,制造工艺,和材料合成技术已将柔性传感器定位为可穿戴设备中的关键组件。这些发展正在推动基于柔性传感器的可穿戴技术朝着更高的智能方向发展,便利性,优越的性能,和生物相容性。最近,被称为MXenes的二维纳米材料由于其优异的机械性能而受到广泛的关注,杰出的导电性,大的比表面积,和丰富的表面官能团。这些值得注意的属性赋予了MXenes在应变传感应用中的巨大潜力,压力测量,气体检测,等。此外,聚合物基材如聚二甲基硅氧烷(PDMS),聚氨酯(PU),热塑性聚氨酯(TPU)由于重量轻,被广泛用作MXene及其复合材料的支撑材料,灵活性,易于加工,从而提高了传感器的整体性能和耐磨性。本文综述了MXene及其复合材料在应变传感器领域的最新进展,压力传感器,和气体传感器。我们介绍了基于MXene复合材料的可穿戴传感器的许多最新案例研究,并讨论了基于MXene复合材料的可穿戴传感器的材料和结构的优化。提供了增强基于MXene复合材料的可穿戴传感器发展的策略和方法。最后,我们总结了MXene可穿戴传感器的当前进展,并预测了未来的趋势和分析。
    In recent years, advancements in the Internet of Things (IoT), manufacturing processes, and material synthesis technologies have positioned flexible sensors as critical components in wearable devices. These developments are propelling wearable technologies based on flexible sensors towards higher intelligence, convenience, superior performance, and biocompatibility. Recently, two-dimensional nanomaterials known as MXenes have garnered extensive attention due to their excellent mechanical properties, outstanding electrical conductivity, large specific surface area, and abundant surface functional groups. These notable attributes confer significant potential on MXenes for applications in strain sensing, pressure measurement, gas detection, etc. Furthermore, polymer substrates such as polydimethylsiloxane (PDMS), polyurethane (PU), and thermoplastic polyurethane (TPU) are extensively utilized as support materials for MXene and its composites due to their light weight, flexibility, and ease of processing, thereby enhancing the overall performance and wearability of the sensors. This paper reviews the latest advancements in MXene and its composites within the domains of strain sensors, pressure sensors, and gas sensors. We present numerous recent case studies of MXene composite material-based wearable sensors and discuss the optimization of materials and structures for MXene composite material-based wearable sensors, offering strategies and methods to enhance the development of MXene composite material-based wearable sensors. Finally, we summarize the current progress of MXene wearable sensors and project future trends and analyses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    轻质烧蚀热防护材料(TPM),可以抵抗氧化气氛中的长期消融,是航空航天飞行器迫切需要的。在这里,通过简单高效的溶胶-凝胶,然后进行常压干燥,开发了具有互穿网络多尺度结构的碳织物/酚醛树脂/硅氧烷气凝胶(CF/PFA/SiA)纳米复合材料。三元网络结构在宏观中互穿,micron-,和纳米尺度,分子尺度的化学交联,和原位加热产生的二氧化硅层协同产生低密度(~0.3gcm-3),增强的机械性能,热稳定性,和抗氧化性,和81mWm-1K-1的低热导率。更有趣的是,良好的热保护,在1300°C下接近零的表面凹陷持续300s,并且在20mm厚度下具有低于60°C的背面温度的显着隔热。互穿网络策略可以扩展到其他具有优异高温性能的多孔组件,如ZrO2和SiC,这将促进轻质烧蚀TPM的改进。此外,它可能会为制造多功能二进制文件开辟一条新途径,三元,甚至多种互穿网络材料。
    Lightweight ablative thermal protection materials (TPMs), which can resist long-term ablation in an oxidizing atmosphere, are urgently required for aerospace vehicles. Herein, carbon fabric/phenol-formaldehyde resin/siloxane aerogels (CF/PFA/SiA) nanocomposite with interpenetrating network multiscale structure was developed via simple and efficient sol-gel followed by atmospheric pressure drying. The ternary networks structurally interpenetrating in macro-, micron-, and the nanoscales, chemically cross-linking at the molecular scale, and silica layer generated by in situ heating synergistically bring about low density (∼0.3 g cm-3), enhanced mechanical properties, thermal stability, and oxidation resistance, and a low thermal conductivity of 81 mW m-1 K-1. More intriguingly, good thermal protection with near-zero surface recession at 1300 °C for 300 s and remarkable thermal insulation with a back-side temperature below 60 °C at 20 mm thickness. The interpenetrating network strategy can be extended to other porous components with excellent high-temperature properties, such as ZrO2 and SiC, which will facilitate the improvement of lightweight ablative TPMs. Moreover, it may open a new avenue for fabricating multifunctional binary, ternary, and even multiple interpenetrating network materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由天然活性产物制造的功能药物纳米递送系统在生物医学领域具有广阔的前景。在这项研究中,制备并研究了抗溃疡性结肠炎(UC)姜黄素负载的生物聚合物纳米复合材料(CZNH)。使用反溶剂沉淀法获得CZNH纳米复合材料,其中姜黄素负载的玉米醇溶蛋白胶体颗粒作为核心,而酪蛋白钠(NaCas)和透明质酸(HA)形成了CZNH纳米复合材料的最外层。傅里叶变换红外(FT-IR)光谱和透射电镜(TEM)研究结果表明,CZNH纳米复合材料是由玉米醇溶蛋白之间的氢键相互作用和静电吸附产生的双层球形胶束(250nm),NaCas,和HA。此外,CZNH纳米复合材料在水溶液中表现出突出的再悬浮和储存稳定性,其可以在4°C下储存约30天。体内抗UC研究表明,CZNH纳米复合材料可以通过介导炎症因子[肿瘤坏死因子-α(TNF-α),白细胞介素-1β(IL-1β),和IL-6],髓过氧化物酶(MPO),和氧化应激因子[丙二醛(MDA),超氧化物歧化酶(SOD),和谷胱甘肽过氧化物酶(GSH-Px)]。这项研究表明,CZNH纳米复合材料显示出作为UC治疗的有效姜黄素纳米载体的巨大前景。
    Functional drugs nano delivery systems manufactured from natural active products are promising for the field of biomedicines. In this study, an anti-ulcerative colitis (UC) curcumin loaded biopolymeric nanocomposite (CZNH) was fabricated and investigated. CZNH nanocomposite was obtained using the anti-solvent precipitation method, wherein curcumin-loaded zein colloidal particles served as the core, while sodium casein (NaCas) and hyaluronic acid (HA) formed the outermost layer of CZNH nanocomposite. Fourier transform infrared (FT-IR) spectrum and transmission electron microscopy (TEM) findings demonstrated that CZNH nanocomposite was a double-layer spherical micelle (250 nm) resulting from the hydrogen bond interactions and electrostatic adsorptions between zein, NaCas, and HA. Furthermore, CZNH nanocomposite exhibited prominent resuspension and storage stability in aqueous solution, which can be stored at 4 °C for approximately 30 days. In vivo anti-UC studies showed that CZNH nanocomposite could effectively alleviate UC symptoms via mediating inflammatory factors [tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6], myeloperoxidase (MPO), and oxidative stress factor [malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px)]. This study suggested that the CZNH nanocomposite showed great promise as an efficient curcumin nanocarrier for UC therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    纳米粒子(NPs)在调节植物对盐胁迫的耐受性方面很重要。薄荷是应用最广泛的芳香植物之一,对盐胁迫有很高的敏感性。本研究调查了生理和生化因素,以更好地了解肉桂酸(CA)和肉桂酸纳米复合材料在薄荷植物盐度控制中的行为。第一个因素是不同盐浓度的盐胁迫,包括0、50、100和150mg/L,第二个因素是50μMCA,第三个因素是基于羧甲基纤维素的50μMCA纳米复合材料(CMC-CANC)。结果表明,胁迫标记随着盐度水平的增加而增加。相反,用盐度处理的植物显示生理和光合参数下降,而CA和CMCCANC的应用增加了这些关键参数。在盐度下,与对照相比,丙二醛和过氧化氢含量分别下降11.3%和70.4%,分别。此外,CA和CMC-CANC通过增加脯氨酸等相容性溶质含量来增强薄荷对盐度的耐受性,游离氨基酸,蛋白质含量,和可溶性碳水化合物,增加抗氧化酶,和减少植物组织中的胁迫标记。与对照相比,叶绿素荧光和脯氨酸含量分别增加了1.1%和172.1%,分别。盐度胁迫对所有生理和生化参数产生负面影响,但CA和CMC-CANC治疗改善了它们。我们得出结论,纳米复合材料,一种生物兴奋剂,在盐度条件下显着增强薄荷耐受性。
    Nanoparticles (NPs) are important in regulating plant tolerance to salt stress. Peppermint is one of the most widely used aromatic plants, with a high sensitivity to salt stress. The present study investigated physiological and biochemical factors to understand better the behavior of cinnamic acid (CA) and cinnamic acid nanocomposite in salinity control in peppermint plants. The first factor was salt stress with different salt concentrations, including 0, 50, 100, and 150 mg/L, the second factor was 50 μM CA, and the third factor was 50 μM CA nanocomposite based on carboxymethyl cellulose (CMC-CA NC). Results showed that stress markers increased with increasing salinity levels. On the contrary, plants treated with salinity showed a decrease in physiological and photosynthetic parameters, while the application of CA and CMC CA NC increased these critical parameters. Under salinity, compared to the control, malondialdehyde and hydrogen peroxide contents decreased by 11.3% and 70.4%, respectively. Furthermore, CA and CMC-CA NC enhanced peppermint tolerance to salinity by increasing compatible solute content such as proline, free amino acids, protein content, and soluble carbohydrates, increasing antioxidant enzymes, and decreasing stress markers in plant tissues. Compared to the control, chlorophyll fluorescence and proline content increased by 1.1% and 172.1%, respectively. Salinity stress negatively affected all physiological and biochemical parameters, but CA and CMC-CA NC treatments improved them. We concluded that the nanocomposite, a biostimulant, significantly enhances mint tolerance under salinity conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    糖尿病难治性溃疡的临床治疗受到与伤口愈合相关的慢性炎症和细胞功能障碍的阻碍。bFGF在伤口愈合中的重要临床应用受到其体内不稳定性的限制。硫磺已在临床上用于皮肤疾病的治疗。我们以前发现硫的掺入提高了硒纳米颗粒加速伤口愈合的能力,然而,硒的毒性仍然对其临床应用构成风险。为了获得具有高促再生活性和低毒性的材料,我们探索了硒硫纳米颗粒通过RNA-Seq帮助伤口愈合的机制,并设计了一种名为Nano-S@bFGF的纳米颗粒,它由硫和bFGF构成。不出所料,Nano-S@bFGF不仅再生斑马鱼尾鳍并促进皮肤伤口愈合,而且还促进糖尿病小鼠的皮肤修复,具有有益的安全性。机械上,Nano-S@bFGF成功共激活FGFR和Hippo信号通路以调节伤口愈合。简而言之,本文报道的Nano-S@bFGF为合成生物活性纳米硫和bFGF提供了一种有效可行的方法。从长远来看,我们的结果重振了努力,以发现硫和bFGF在各种人类疾病中更独特的生物功能。
    Clinical treatment of diabetic refractory ulcers is impeded by chronic inflammation and cell dysfunction associated with wound healing. The significant clinical application of bFGF in wound healing is limited by its instability in vivo. Sulfur has been applied for the treatment of skin diseases in the clinic for antibiosis. We previously found that sulfur incorporation improves the ability of selenium nanoparticles to accelerate wound healing, yet the toxicity of selenium still poses a risk for its clinical application. To obtain materials with high pro-regeneration activity and low toxicity, we explored the mechanism by which selenium-sulfur nanoparticles aid in wound healing via RNA-Seq and designed a nanoparticle called Nano-S@bFGF, which was constructed from sulfur and bFGF. As expected, Nano-S@bFGF not only regenerated zebrafish tail fins and promoted skin wound healing but also promoted skin repair in diabetic mice with a profitable safety profile. Mechanistically, Nano-S@bFGF successfully coactivated the FGFR and Hippo signalling pathways to regulate wound healing. Briefly, the Nano-S@bFGF reported here provides an efficient and feasible method for the synthesis of bioactive nanosulfur and bFGF. In the long term, our results reinvigorated efforts to discover more peculiar unique biofunctions of sulfur and bFGF in a great variety of human diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号