NAFLD, non-alcoholic fatty liver disease

NAFLD,非酒精性脂肪性肝病
  • 文章类型: Journal Article
    UNASSIGNED:非侵入性测试(NIT)为非酒精性脂肪性肝病(NAFLD)的晚期纤维化鉴定提供了实用的解决方案。尽管越来越多的实施,它们的使用没有标准化,这可能导致解释不一致和风险分层。我们旨在评估一系列医疗机构中使用的NIT类型和相应的截止值。
    UNASSIGNED:一项调查已分发给参加全球NAFLD共识声明的肝脏健康专家的便利样本。受访者提供了有关其诊所中使用的NIT及其相应截止值以及其所在地区已建立的护理途径中使用的NIT的信息。
    未经评估:来自24个国家的35名受访者,89%的人在第三级环境中练习。总共使用了14种不同的NIT,和每个受访者报告使用至少一个(中位数=3)。在受访者中,通过振动控制的瞬时弹性成像(Fibroscan®),使用FIB-4和肝脏硬度报告了80%,其次是NAFLD纤维化评分(49%)。对于FIB-4,71%的受访者使用了<1.3的低截止值(范围<1.0至<1.45),21%的受访者使用了特定年龄的截止值。对于Fibroscan®,21%的受访者使用单一的肝脏硬度截止值:50%的8kPa,其余使用7.2kPa,7.8kPa和8.7kPa。在63%的受访者中,他们使用了下肝和上肝硬度截止值,这两个值都有变化(<5至<10kPa和>7.5至>20kPa,分别)。
    UNASSIGNED:用于NAFLD风险分层的相同NIT的截止值在临床医生之间有所不同。作为截止冲击测试性能,这些发现强调了风险评估的异质性,并支持在NAFLD管理中建立标准化使用NIT的一致指南的重要性.
    UNASSIGNED:由于非酒精性脂肪性肝病(NAFLD)在普通人群中的患病率很高,因此确定肝纤维化的晚期患者非常重要。这样才能得到适当的治疗。非侵入性测试(NIT)提供了一种评估患者纤维化风险的实用方法。然而,我们发现用于相同NIT的截止值在临床医生之间有所不同.作为截止冲击测试性能,这些研究结果强调了建立一致的NIT标准化使用指南以优化NAFLD临床管理的重要性.
    UNASSIGNED: Non-invasive tests (NITs) offer a practical solution for advanced fibrosis identification in non-alcoholic fatty liver disease (NAFLD). Despite increasing implementation, their use is not standardised, which can lead to inconsistent interpretation and risk stratification. We aimed to assess the types of NITs and the corresponding cut-offs used in a range of healthcare settings.
    UNASSIGNED: A survey was distributed to a convenience sample of liver health experts who participated in a global NAFLD consensus statement. Respondents provided information on the NITs used in their clinic with the corresponding cut-offs and those used in established care pathways in their areas.
    UNASSIGNED: There were 35 respondents from 24 countries, 89% of whom practised in tertiary level settings. A total of 14 different NITs were used, and each respondent reported using at least one (median = 3). Of the respondents, 80% reported using FIB-4 and liver stiffness by vibration-controlled transient elastography (Fibroscan®), followed by the NAFLD fibrosis score (49%). For FIB-4, 71% of respondents used a low cut-off of <1.3 (range <1.0 to <1.45) and 21% reported using age-specific cut-offs. For Fibroscan®, 21% of respondents used a single liver stiffness cut-off: 8 kPa in 50%, while the rest used 7.2 kPa, 7.8 kPa and 8.7 kPa. Among the 63% of respondents who used lower and upper liver stiffness cut-offs, there were variations in both values (<5 to <10 kPa and >7.5 to >20 kPa, respectively).
    UNASSIGNED: The cut-offs used for the same NITs for NAFLD risk stratification vary between clinicians. As cut-offs impact test performance, these findings underscore the heterogeneity in risk-assessment and support the importance of establishing consistent guidelines on the standardised use of NITs in NAFLD management.
    UNASSIGNED: Owing to the high prevalence of non-alcoholic fatty liver disease (NAFLD) in the general population it is important to identify those who have more advanced stages of liver fibrosis, so that they can be properly treated. Non-invasive tests (NITs) provide a practical way to assess fibrosis risk in patients. However, we found that the cut-offs used for the same NITs vary between clinicians. As cut-offs impact test performance, these findings highlight the importance of establishing consistent guidelines on the standardised use of NITs to optimise clinical management of NAFLD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    未经证实:XBP1调节巨噬细胞促炎反应,但其在巨噬细胞刺激因子干扰素基因(STING)激活和肝纤维化中的作用尚不清楚。X-box结合蛋白1(XBP1)已被证明可促进巨噬细胞核苷酸结合寡聚化结构域,脂肪性肝炎中富含亮氨酸的重复序列和含pyrin结构域3(NLRP3)的激活。在这里,我们旨在探讨XBP1在STING信号调节和随后的NLRP3激活肝纤维化过程中的潜在机制。
    未经证实:在人纤维化肝组织样品中测量XBP1表达。在骨髓特异性Xbp1-中诱导肝纤维化,发抖-,和Nlrp3缺陷小鼠通过四氯化碳注射,胆管结扎,或蛋氨酸/胆碱缺乏的饮食。
    UASSIGNED:尽管在小鼠和临床患者的纤维化肝巨噬细胞中观察到XBP1表达增加,骨髓特异性Xbp1缺乏或XBP1的药理抑制保护肝脏免受纤维化。此外,它以STING/IRF3依赖性方式抑制巨噬细胞NLPR3激活。氧化性线粒体损伤促进巨噬细胞自身mtDNA和cGAS/STING/NLRP3信号激活的胞浆渗漏以促进肝纤维化。机械上,RNA测序分析表明,在Xbp1缺陷型巨噬细胞中,mtDNA表达降低,BCL2/腺病毒E1B相互作用蛋白3(BNIP3)介导的线粒体自噬激活增加。染色质免疫沉淀(ChIP)分析进一步表明,剪接的XBP1直接与Bnip3启动子结合,并抑制巨噬细胞中Bnip3的转录。Xbp1缺乏通过促进巨噬细胞中BNIP3介导的线粒体自噬激活来降低mtDNA胞质释放和STING/NLRP3激活,被Bnip3击倒而废除。此外,巨噬细胞XBP1/STING信号传导有助于肝星状细胞的激活。
    UNASSIGNED:我们的研究结果表明,XBP1通过BNIP3介导的线粒体自噬调节巨噬细胞自身mtDNA胞质渗漏来控制巨噬细胞cGAS/STING/NLRP3的激活,从而提供了一种新的抗肝纤维化靶点。
    UNASSIGNED:肝纤维化是慢性肝病的典型进展过程,由炎症和免疫反应驱动,其特征在于肝脏中的细胞外基质过量。目前,目前尚无有效的肝纤维化治疗策略,导致全世界的高死亡率。在这项研究中,我们发现髓系特异性Xbp1缺乏保护小鼠肝脏免受纤维化,而XBP1抑制改善小鼠肝纤维化。这项研究得出结论,在巨噬细胞中靶向XBP1信号可能提供一种保护肝脏免受纤维化的新策略。
    UNASSIGNED: XBP1 modulates the macrophage proinflammatory response, but its function in macrophage stimulator of interferon genes (STING) activation and liver fibrosis is unknown. X-box binding protein 1 (XBP1) has been shown to promote macrophage nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3 (NLRP3) activation in steatohepatitis. Herein, we aimed to explore the underlying mechanism of XBP1 in the regulation of STING signalling and the subsequent NLRP3 activation during liver fibrosis.
    UNASSIGNED: XBP1 expression was measured in the human fibrotic liver tissue samples. Liver fibrosis was induced in myeloid-specific Xbp1-, STING-, and Nlrp3-deficient mice by carbon tetrachloride injection, bile duct ligation, or a methionine/choline-deficient diet.
    UNASSIGNED: Although increased XBP1 expression was observed in the fibrotic liver macrophages of mice and clinical patients, myeloid-specific Xbp1 deficiency or pharmacological inhibition of XBP1 protected the liver against fibrosis. Furthermore, it inhibited macrophage NLPR3 activation in a STING/IRF3-dependent manner. Oxidative mitochondrial injury facilitated cytosolic leakage of macrophage self-mtDNA and cGAS/STING/NLRP3 signalling activation to promote liver fibrosis. Mechanistically, RNA sequencing analysis indicated a decreased mtDNA expression and an increased BCL2/adenovirus E1B interacting protein 3 (BNIP3)-mediated mitophagy activation in Xbp1-deficient macrophages. Chromatin immunoprecipitation (ChIP) assays further suggested that spliced XBP1 bound directly to the Bnip3 promoter and inhibited the transcription of Bnip3 in macrophages. Xbp1 deficiency decreased the mtDNA cytosolic release and STING/NLRP3 activation by promoting BNIP3-mediated mitophagy activation in macrophages, which was abrogated by Bnip3 knockdown. Moreover, macrophage XBP1/STING signalling contributed to the activation of hepatic stellate cells.
    UNASSIGNED: Our findings demonstrate that XBP1 controls macrophage cGAS/STING/NLRP3 activation by regulating macrophage self-mtDNA cytosolic leakage via BNIP3-mediated mitophagy modulation, thus providing a novel target against liver fibrosis.
    UNASSIGNED: Liver fibrosis is a typical progressive process of chronic liver disease, driven by inflammatory and immune responses, and is characterised by an excess of extracellular matrix in the liver. Currently, there is no effective therapeutic strategy for the treatment of liver fibrosis, resulting in high mortality worldwide. In this study, we found that myeloid-specific Xbp1 deficiency protected the liver against fibrosis in mice, while XBP1 inhibition ameliorated liver fibrosis in mice. This study concluded that targeting XBP1 signalling in macrophages may provide a novel strategy for protecting the liver against fibrosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    心脏代谢疾病(CMD),以代谢紊乱引发的心血管事件为特征,是导致死亡和残疾的主要原因。代谢紊乱引发慢性低度炎症,实际上,已经提出了一个新的元融合概念来定义与免疫适应有关的代谢状态。在免疫系统调节中不断增加的系统性代谢物列表中,胆汁酸(BA)代表了涉及CMD发育整个过程的一类独特的代谢产物,因为它在形成全身免疫代谢中具有多方面的作用。BA可以通过多种机制增强或抑制炎症反应来直接调节免疫系统。此外,BA是维持宿主和微生物群之间动态通信的关键决定因素。重要的是,BAs通过靶向法尼醇X受体(FXR)和不同的其他核受体在调节脂质的代谢稳态中起关键作用,葡萄糖,和氨基酸。此外,BAs轴本身易受炎症和代谢干预,因此,BAs轴可以构成元合成中的倒数调节环。因此,我们建议BAs轴代表整合CMD过程中涉及的全身免疫代谢的核心协调者。我们提供了一个更新的总结和密集的讨论关于如何BAs塑造先天和适应性免疫系统。以及BAs轴如何作为CMD条件下代谢紊乱与慢性炎症整合的核心协调器。
    Cardiometabolic disease (CMD), characterized with metabolic disorder triggered cardiovascular events, is a leading cause of death and disability. Metabolic disorders trigger chronic low-grade inflammation, and actually, a new concept of metaflammation has been proposed to define the state of metabolism connected with immunological adaptations. Amongst the continuously increased list of systemic metabolites in regulation of immune system, bile acids (BAs) represent a distinct class of metabolites implicated in the whole process of CMD development because of its multifaceted roles in shaping systemic immunometabolism. BAs can directly modulate the immune system by either boosting or inhibiting inflammatory responses via diverse mechanisms. Moreover, BAs are key determinants in maintaining the dynamic communication between the host and microbiota. Importantly, BAs via targeting Farnesoid X receptor (FXR) and diverse other nuclear receptors play key roles in regulating metabolic homeostasis of lipids, glucose, and amino acids. Moreover, BAs axis per se is susceptible to inflammatory and metabolic intervention, and thereby BAs axis may constitute a reciprocal regulatory loop in metaflammation. We thus propose that BAs axis represents a core coordinator in integrating systemic immunometabolism implicated in the process of CMD. We provide an updated summary and an intensive discussion about how BAs shape both the innate and adaptive immune system, and how BAs axis function as a core coordinator in integrating metabolic disorder to chronic inflammation in conditions of CMD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肝细胞癌(HCC)是一种侵袭性人类癌症,在全球范围内发病率不断上升。已经做出了许多努力来探索治疗HCC的药物疗法。如靶向酪氨酸激酶抑制剂,基于免疫的疗法和联合化疗。然而,目前的策略存在局限性,包括例如化学抗性。肿瘤的启动和进展是由代谢的重新编程驱动的,特别是在HCC发展过程中。最近,代谢相关脂肪性肝病(MAFLD),非酒精性脂肪性肝病(NAFLD)新命名法的重新评估,表明对肝脏疾病发病机制中代谢的认识日益提高,包括HCC,从而提出了针对异常代谢的肝癌治疗新策略。在这次审查中,我们通过突出葡萄糖的代谢目标来介绍方向,脂肪酸,氨基酸和谷氨酰胺代谢,适用于HCC药物干预。我们还总结和讨论了目前针对HCC治疗过程中代谢失调的药物和研究。此外,讨论了肝癌靶向代谢治疗的发现和发展的机遇和挑战。
    Hepatocellular carcinoma (HCC) is an aggressive human cancer with increasing incidence worldwide. Multiple efforts have been made to explore pharmaceutical therapies to treat HCC, such as targeted tyrosine kinase inhibitors, immune based therapies and combination of chemotherapy. However, limitations exist in current strategies including chemoresistance for instance. Tumor initiation and progression is driven by reprogramming of metabolism, in particular during HCC development. Recently, metabolic associated fatty liver disease (MAFLD), a reappraisal of new nomenclature for non-alcoholic fatty liver disease (NAFLD), indicates growing appreciation of metabolism in the pathogenesis of liver disease, including HCC, thereby suggesting new strategies by targeting abnormal metabolism for HCC treatment. In this review, we introduce directions by highlighting the metabolic targets in glucose, fatty acid, amino acid and glutamine metabolism, which are suitable for HCC pharmaceutical intervention. We also summarize and discuss current pharmaceutical agents and studies targeting deregulated metabolism during HCC treatment. Furthermore, opportunities and challenges in the discovery and development of HCC therapy targeting metabolism are discussed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    二恶英样分子与内分泌干扰和肝脏疾病有关。为了更好地理解芳烃受体(AHR)生物学,在该受体的配体激活或全身遗传消融后,对小鼠进行了代谢表型分析和肝脏蛋白质组学.雄性野生型(WT)和Ahr-/-小鼠(Taconic)饲喂对照饮食并暴露于3,3',4,4\',5-五氯联苯(PCB126)(61nmol/kg,通过管饲法)或媒介物,持续两周。PCB126增加了WT中经典AHR靶标(Cyp1a1和Cyp1a2)的表达,但不增加Ahr-/-。敲除后肥胖增加,糖耐量降低;肝脏变小,脂肪变性和perilipin-2增加;矛盾的是血脂降低。PCB126与Ahr-/-中的肝甘油三酯增加有关。Ahr-/-基因型对肝脏蛋白质组的影响比配体激活更大,但顶级基因本体论(GO)过程相似。PCB126相关的肝脏蛋白质组是Ahr依赖性的。Ahr主要调节肝脏代谢(例如,脂质,外源性物质,有机酸)和生物能学,但它也会影响肝脏内分泌反应(例如,胰岛素受体)和功能,包括生产类固醇,肝细胞因子,和信息素结合蛋白。这些作用可能是通过相互作用转录因子或microRNA间接介导的。AHR及其配体的生物学作用需要在肝脏代谢健康和疾病方面进行更多的研究。
    Dioxin-like molecules have been associated with endocrine disruption and liver disease. To better understand aryl hydrocarbon receptor (AHR) biology, metabolic phenotyping and liver proteomics were performed in mice following ligand-activation or whole-body genetic ablation of this receptor. Male wild type (WT) and Ahr -/- mice (Taconic) were fed a control diet and exposed to 3,3\',4,4\',5-pentachlorobiphenyl (PCB126) (61 nmol/kg by gavage) or vehicle for two weeks. PCB126 increased expression of canonical AHR targets (Cyp1a1 and Cyp1a2) in WT but not Ahr -/-. Knockouts had increased adiposity with decreased glucose tolerance; smaller livers with increased steatosis and perilipin-2; and paradoxically decreased blood lipids. PCB126 was associated with increased hepatic triglycerides in Ahr -/-. The liver proteome was impacted more so by Ahr -/- genotype than ligand-activation, but top gene ontology (GO) processes were similar. The PCB126-associated liver proteome was Ahr-dependent. Ahr principally regulated liver metabolism (e.g., lipids, xenobiotics, organic acids) and bioenergetics, but it also impacted liver endocrine response (e.g., the insulin receptor) and function, including the production of steroids, hepatokines, and pheromone binding proteins. These effects could have been indirectly mediated by interacting transcription factors or microRNAs. The biologic roles of the AHR and its ligands warrant more research in liver metabolic health and disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    非酒精性脂肪性肝病(NAFLD)是肝脏总胆固醇(TC)和总甘油三酯(TG)积累增加的结果。在我们之前的研究中,我们发现用金丝桃苷治疗的大鼠对肝脏脂质积累产生了抗性。
    本研究旨在研究金丝桃苷对NAFLD大鼠肝脏组织脂质积累的抑制作用的可能机制。
    应用针对胆汁酸(BA)代谢的无标记蛋白质组学和代谢组学,以揭示金丝桃苷减少NAFLD大鼠肝脂质积累的机制。
    为了应对金丝桃苷治疗,与脂肪酸降解途径相关的几种蛋白质,胆固醇代谢途径,胆汁分泌途径发生了改变,包括ECI1,Acnat2,ApoE,和BSEP,等。核受体(NRs)的表达,包括法尼醇X受体(FXR)和肝X受体α(LXRα),在金丝桃苷治疗的大鼠肝脏组织中增加,伴随着肝脏从头脂肪生成中催化酶的蛋白质表达减少,以及经典和替代BA合成途径中酶的蛋白质水平增加。肝缀合的BAs比未缀合的BAs毒性更小并且更亲水。BA靶向代谢组学表明,金丝桃苷可以降低肝脏未结合BA的水平,并增加肝脏结合BA的水平。
    合照,结果表明,金丝桃苷可以通过调节胆固醇代谢以及BAs的代谢和排泄来改善NAFLD的状况。这些发现有助于理解金丝桃苷降低NAFLD大鼠胆固醇和甘油三酯的机制。
    Non-alcoholic fatty liver disease (NAFLD) results from increased hepatic total cholesterol (TC) and total triglyceride (TG) accumulation. In our previous study, we found that rats treated with hyperoside became resistant to hepatic lipid accumulation.
    The present study aims to investigate the possible mechanisms responsible for the inhibitory effects of hyperoside on the lipid accumulation in the liver tissues of the NAFLD rats.
    Label-free proteomics and metabolomics targeting at bile acid (BA) metabolism were applied to disclose the mechanisms for hyperoside reducing hepatic lipid accumulation among the NAFLD rats.
    In response to hyperoside treatment, several proteins related to the fatty acid degradation pathway, cholesterol metabolism pathway, and bile secretion pathway were altered, including ECI1, Acnat2, ApoE, and BSEP, etc. The expression of nuclear receptors (NRs), including farnesoid X receptor (FXR) and liver X receptor α (LXRα), were increased in hyperoside-treated rats\' liver tissue, accompanied by decreased protein expression of catalyzing enzymes in the hepatic de novo lipogenesis and increased protein level of enzymes in the classical and alternative BA synthetic pathway. Liver conjugated BAs were less toxic and more hydrophilic than unconjugated BAs. The BA-targeted metabolomics suggest that hyperoside could decrease the levels of liver unconjugated BAs and increase the levels of liver conjugated BAs.
    Taken together, the results suggest that hyperoside could improve the condition of NAFLD by regulating the cholesterol metabolism as well as BAs metabolism and excretion. These findings contribute to understanding the mechanisms by which hyperoside lowers the cholesterol and triglyceride in NAFLD rats.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    BACKGROUND: The worldwide prevalence of non-alcoholic fatty liver disease (NAFLD) has stimulated work to identify biomarkers and develop effective treatments. Metabolomics is an emerging tool that has been widely applied to discover biomarkers and simultaneously uncover pathological mechanisms. Here, we aim to optimize metabolomic acquisition with the goal of obtaining a systemic metabolic profile to unravel the potential link between dysregulated metabolism and NAFLD.
    METHODS: We analyzed serum samples collected from healthy subjects (n = 8) and NAFLD patients (n = 8) via an integrative analytical workflow using two orthogonal separation modes with T3 and amide columns and two ionization polarity modes on a UPLC-ESI-Q/TOF. Data dependent acquisition was employed for data acquisition. Differentially expressed metabolites and lipids were identified by comparing the collected metabolic and lipidomic profiles between the healthy subjects and NAFLD patients.
    RESULTS: The integrative LC-MS/MS analytical workflow employed here features an improved coverage of metabolites and lipids, which leads to the identification of 20 potential biomarkers of NAFLD, including lipids, acylcarnitines, and organic acids.
    CONCLUSIONS: This pilot study has identified potential biomarkers for NAFLD and revealed corresponding dysregulated metabolic pathways related to NAFLD\'s occurrence and progression, establishing a molecular basis for NAFLD diagnosis and therapeutic intervention.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    染色质的三维(3D)构象是基因表达精确调节的组成部分。非酒精性脂肪性肝病(NAFLD)的3D基因组和基因组变异在很大程度上是未知的,尽管它们在细胞功能和生理过程中起着关键作用。高通量染色体构象捕获(Hi-C),纳米孔测序,在正常和NAFLD小鼠的肝脏上进行RNA测序(RNA-seq)测定。生成高分辨率3D染色质相互作用图,以检查包括A/B区室在内的不同3D基因组层次结构。拓扑关联域(TAD),和Hi-C的染色质循环,和全基因组测序通过纳米孔测序识别结构变异(SV)和拷贝数变异(CNV)。我们确定了基因组中数千个区域在3D染色质组织和基因组重排方面的变异,在正常和NAFLD小鼠之间,并揭示基因失调经常伴随着这些变异。在NAFLD中鉴定出候选靶基因,受基因重排和空间组织破坏的影响。我们的数据为NAFLD研究提供了高分辨率的3D基因组相互作用资源,揭示了基因重排之间的关系,空间组织破坏,和基因调控,并确定了与NAFLD发病机制相关的这些变异的候选基因。新发现为NAFLD发病机制提供了新的见解,并为NAFLD治疗提供了新的概念框架。
    The three-dimensional (3D) conformation of chromatin is integral to the precise regulation of gene expression. The 3D genome and genomic variations in non-alcoholic fatty liver disease (NAFLD) are largely unknown, despite their key roles in cellular function and physiological processes. High-throughput chromosome conformation capture (Hi-C), Nanopore sequencing, and RNA-sequencing (RNA-seq) assays were performed on the liver of normal and NAFLD mice. A high-resolution 3D chromatin interaction map was generated to examine different 3D genome hierarchies including A/B compartments, topologically associated domains (TADs), and chromatin loops by Hi-C, and whole genome sequencing identifying structural variations (SVs) and copy number variations (CNVs) by Nanopore sequencing. We identified variations in thousands of regions across the genome with respect to 3D chromatin organization and genomic rearrangements, between normal and NAFLD mice, and revealed gene dysregulation frequently accompanied by these variations. Candidate target genes were identified in NAFLD, impacted by genetic rearrangements and spatial organization disruption. Our data provide a high-resolution 3D genome interaction resource for NAFLD investigations, revealed the relationship among genetic rearrangements, spatial organization disruption, and gene regulation, and identified candidate genes associated with these variations implicated in the pathogenesis of NAFLD. The newly findings offer insights into novel mechanisms of NAFLD pathogenesis and can provide a new conceptual framework for NAFLD therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    最近鉴定的新型胞质DNA传感器环GMP-AMP合酶(cGAS)通过催化环GMP-AMP的合成激活干扰素基因的下游衔接蛋白刺激物(STING)。这反过来通过释放各种细胞因子引发先天免疫反应,包括I型干扰素.外源DNA(微生物感染)或内源DNA(核或线粒体渗漏)可以充当cGAS配体并导致cGAS-STING信号传导的激活。因此,cGAS-STING通路在感染性疾病中起着至关重要的作用,无菌炎症,肿瘤,和自身免疫性疾病。此外,cGAS-STING信号通过其他机制影响肝脏炎症的进展,如自噬和代谢。在这次审查中,我们总结了我们对cGAS-STING信号传导在不同肝脏疾病的先天免疫调节中的作用的理解的最新进展。此外,我们讨论了靶向cGAS-STING途径治疗肝病的治疗潜力。
    The recently identified novel cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) activates the downstream adaptor protein stimulator of interferon genes (STING) by catalysing the synthesis of cyclic GMP-AMP. This in turn initiates an innate immune response through the release of various cytokines, including type I interferon. Foreign DNA (microbial infection) or endogenous DNA (nuclear or mitochondrial leakage) can serve as cGAS ligands and lead to the activation of cGAS-STING signalling. Therefore, the cGAS-STING pathway plays essential roles in infectious diseases, sterile inflammation, tumours, and autoimmune diseases. In addition, cGAS-STING signalling affects the progression of liver inflammation through other mechanisms, such as autophagy and metabolism. In this review, we summarise recent advances in our understanding of the role of cGAS-STING signalling in the innate immune modulation of different liver diseases. Furthermore, we discuss the therapeutic potential of targeting the cGAS-STING pathway in the treatment of liver diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    酒精性肝病(ALD)导致胰岛素抵抗,脂质代谢功能障碍,和炎症。我们研究了陈年大蒜的S-烯丙基巯基半胱氨酸(SAMC)对肝细胞损伤的保护作用和直接调节靶点。使用慢性乙醇喂养的ALD体内模型(NIAAA模型)来测试SAMC的保护功能。观察到SAMC(300mg/kg,通过管饲法)有效改善ALD诱导的体重减轻,脂肪变性,胰岛素抵抗,和炎症而不影响对照小鼠的健康状况,组织学证明,生物化学,和分子生物学分析。通过生物物理分析和分子对接,我们证明SAMC直接靶向细胞膜上的胰岛素受体(INSR)蛋白,然后恢复下游IRS-1/AKT/GSK3β信号。小鼠的肝脏特异性敲低和Insr的AML-12细胞中siRNA介导的敲低显著损害了SAMC(细胞中250μmol/L)介导的保护作用。IRS-1/AKT信号的恢复部分恢复了肝损伤,并进一步促进了SAMC的有益作用。AKT激动剂和重组IGF-1与SAMC组合的连续施用在小鼠模型中显示出肝脏保护作用。长期(90天)给予SAMC对健康小鼠无明显不良反应。我们得出的结论是,SAMC是针对ALD的有效且安全的肝保护性补充剂,部分通过INSR的直接结合和IRS-1/AKT/GSK3β途径的部分调节。
    Alcoholic liver disease (ALD) causes insulin resistance, lipid metabolism dysfunction, and inflammation. We investigated the protective effects and direct regulating target of S-allylmercaptocysteine (SAMC) from aged garlic on liver cell injury. A chronic ethanol-fed ALD in vivo model (the NIAAA model) was used to test the protective functions of SAMC. It was observed that SAMC (300 mg/kg, by gavage method) effectively ameliorated ALD-induced body weight reduction, steatosis, insulin resistance, and inflammation without affecting the health status of the control mice, as demonstrated by histological, biochemical, and molecular biology assays. By using biophysical assays and molecular docking, we demonstrated that SAMC directly targeted insulin receptor (INSR) protein on the cell membrane and then restored downstream IRS-1/AKT/GSK3β signaling. Liver-specific knock-down in mice and siRNA-mediated knock-down in AML-12 cells of Insr significantly impaired SAMC (250 μmol/L in cells)-mediated protection. Restoration of the IRS-1/AKT signaling partly recovered hepatic injury and further contributed to SAMC\'s beneficial effects. Continuous administration of AKT agonist and recombinant IGF-1 in combination with SAMC showed hepato-protection in the mice model. Long-term (90-day) administration of SAMC had no obvious adverse effect on healthy mice. We conclude that SAMC is an effective and safe hepato-protective complimentary agent against ALD partly through the direct binding of INSR and partial regulation of the IRS-1/AKT/GSK3β pathway.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号