Host-pathogen interactions

宿主 - 病原体相互作用
  • 文章类型: Journal Article
    为了在基因组水平上解析多孢木霉控制杂草的关键基因,我们在IlluminaHiseq平台上提取了基因组DNA并测序了多孢菌菌株HZ-31的全基因组。使用Trimmoatic清理原始数据,并使用FastQC检查质量。使用SPAdes组装测序数据,并利用GeneMark对装配结果进行基因预测。结果表明,多孢子菌HZ-31的基因组大小为39,325,746bp,具有48%的GC含量,编码的基因数量为11,998个。预测了总共148个tRNA和45个rRNA。在碳水化合物酶数据库中总共注释了782个基因,757个基因被注释到病原体-宿主相互作用数据库中,并鉴定出67个基因簇。此外,预测1023个基因是信号肽蛋白。多形虫HZ-31全基因组序列的注释和功能分析为深入研究其除草作用的分子机制和更有效的利用杂草控制提供了基础。
    In order to resolve the key genes for weed control by Trichoderma polysporum at the genomic level, we extracted the genomic DNA and sequenced the whole genome of T. polysporum strain HZ-31 on the Illumina Hiseq platform. The raw data was cleaned up using Trimmomatic and checked for quality using FastQC. The sequencing data was assembled using SPAdes, and GeneMark was used to perform gene prediction on the assembly results. The results showed that the genome size of T. polysporum HZ-31 was 39,325,746 bp, with 48% GC content, and the number of genes encoded was 11,998. A total of 148 tRNAs and 45 rRNAs were predicted. A total of 782 genes were annotated in the Carbohydrase Database, 757 genes were annotated to the Pathogen-Host Interaction Database, and 67 gene clusters were identified. In addition, 1023 genes were predicted to be signal peptide proteins. The annotation and functional analysis of the whole genome sequence of T. polymorpha HZ-31 provide a basis for the in-depth study of the molecular mechanism of its herbicidal action and more effective utilization for weed control.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    耐万古霉素屎肠球菌(E.屎)感染与较高的死亡率有关。以前的研究强调了先天免疫细胞和信号通路在清除屎肠球菌中的重要性,但是缺乏对宿主-病原体相互作用的全面分析。这里,我们研究了宿主和屎肠球菌在脓毒症腹膜炎小鼠模型中的相互作用。注射亚致死剂量后,我们观察到小鼠败血症评分和组织学评分显着增加,减轻体重和细菌负担,中性粒细胞和巨噬细胞浸润,和细胞因子介导的信号通路的全面激活。在接受致死剂量的小鼠中,低温显著提高生存率,减少细菌负担,细胞因子,与正常体温组相比,MHC-II+募集巨噬细胞的CD86表达。由80只动物的观测数据构建的数学模型,概括了宿主-病原体的相互作用,并进一步验证了低体温的益处。这些发现表明屎肠球菌触发细胞因子介导的信号通路的严重激活,低温可以通过减少细菌负担和炎症来改善预后。
    Vancomycin-resistant Enterococcus faecium (E. faecium) infection is associated with higher mortality rates. Previous studies have emphasized the importance of innate immune cells and signalling pathways in clearing E. faecium, but a comprehensive analysis of host-pathogen interactions is lacking. Here, we investigated the interplay of host and E. faecium in a murine model of septic peritonitis. Following injection with a sublethal dose, we observed significantly increased murine sepsis score and histological score, decreased weight and bacterial burden, neutrophils and macrophages infiltration, and comprehensive activation of cytokine-mediated signalling pathway. In mice receiving a lethal dose, hypothermia significantly improved survival, reduced bacterial burden, cytokines, and CD86 expression of MHC-II+ recruited macrophages compared to the normothermia group. A mathematical model constructed by observational data from 80 animals, recapitulated the host-pathogen interplay, and further verified the benefits of hypothermia. These findings indicate that E. faecium triggers a severe activation of cytokine-mediated signalling pathway, and hypothermia can improve outcomes by reducing bacterial burden and inflammation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    手,脚,和口蹄疫(HFMD)是由肠道病毒71(EV71)引起的常见传染病,经常影响儿童,在某些情况下导致严重感染。总的来说,当感染发生时,身体上调炎症反应以消除病原微生物,保护宿主免受感染。然而,EV71可能抑制宿主的先天免疫以促进病毒感染。目前,尚不完全了解EV71如何劫持宿主细胞进行自身复制。Toll样受体4(TLR4),天然免疫受体,历史上与细菌内毒素诱导的炎症反应相关。然而,目前尚不清楚在EV71感染期间TLR4是否以及如何改变.在这项研究中,我们在RD中观察到TLR4蛋白和基因转录水平的降低,EV71感染后的GES-1和Vero细胞,通过RT-qPCR检测,免疫荧光染色和蛋白质印迹。此外,我们观察到MYD88的TLR4下游分子、p-NF-κBp65、p-TBK1和相关炎性细胞因子也减少,提示抗病毒先天性免疫和炎症反应被抑制。为了确定TLR4变化对EV71感染的影响,我们用TLR4激动剂或抑制剂干扰EV71感染的RD细胞,结果表明TLR4的激活抑制了EV71的复制,而抑制TLR4促进EV71复制。此外,在TLR4siRNA转染和EV71感染的RD细胞中也促进了EV71的复制。这表明EV71下调TLR4的表达可以抑制宿主的免疫防御以促进EV71的自我复制。这种新机制可能是EV71逃避宿主免疫的一种策略。
    Hand, foot, and mouth disease (HFMD) is a common infectious disease caused by enterovirus 71 (EV71) that frequently affects children, leading to severe infections in some cases. In general, when infection occurs, the body upregulates inflammatory responses to eliminate pathogenic microorganisms to protect the host from infection. However, EV71 may inhibit host\'s innate immunity to promote virus infection. At present, it is not fully understood how EV71 hijack the host cells for its own replication. Toll-like receptor 4 (TLR4), a natural immune receptor, historically associated with bacterial endotoxin-induced inflammatory responses. However, it is still unclear whether and how TLR4 is altered during EV71 infection. In this study, we observed a reduction in both TLR4 protein and gene transcript levels in RD, GES-1, and Vero cells following EV71 infection, as detected by RT-qPCR, immunofluorescence staining and western blot. Furthermore, we observed that the TLR4 downstream molecules of MYD88, p-NF-κB p65, p-TBK1 and related inflammatory cytokines were also reduced, suggesting that antiviral innate immune and inflammatory response were suppressed. To determine the impact of TLR4 changes on EV71 infection, we interfered EV71-infected RD cells with TLR4 agonist or inhibitor and the results showed that activation of TLR4 inhibited EV71 replication, while inhibition of TLR4 promote EV71 replication. Besides, EV71 replication was also promoted in TLR4 siRNA-transfected and EV71-infected RD cells. This suggests that down-regulation the expression of TLR4 by EV71 can inhibit host immune defense to promote EV71 self-replication. This novel mechanism may be a strategy for EV71 to evade host immunity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Editorial
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    坏死,最近发现的一种不同于细胞凋亡的细胞程序性死亡形式,已被证实在各种动物模型的细菌感染的发病机理中起重要作用。坏死对宿主有利,但在某些情况下,这可能是有害的。了解坏死性凋亡对细菌感染发病机制的影响,本文就不同细菌感染引起细胞坏死性凋亡的作用及分子机制进行综述。
    Necroptosis, a recently discovered form of cell-programmed death that is distinct from apoptosis, has been confirmed to play a significant role in the pathogenesis of bacterial infections in various animal models. Necroptosis is advantageous to the host, but in some cases, it can be detrimental. To understand the impact of necroptosis on the pathogenesis of bacterial infections, we described the roles and molecular mechanisms of necroptosis caused by different bacterial infections in this review.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    非洲猪瘟(ASF)是一种急性,出血性,由非洲猪瘟病毒(ASFV)引起的猪的高度传染性疾病。我们先前的研究确定ASFVMGF300-2R蛋白作为毒力因子起作用,并发现MGF300-2R通过选择性自噬降解IKKβ。然而,在自噬降解过程中负责IKKβ泛素化的E3泛素连接酶仍然未知。为了解决这个问题,我们首先通过免疫沉淀-质谱法提取了328种与MGF300-2R相互作用的蛋白质。接下来,我们分析并证实了E3泛素连接酶TRIM21和MGF300-2R之间的相互作用,并证明了TRIM21在IKKβ泛素化中的催化作用。最后,我们表明MGF300-2R对IKKβ的降解依赖于TRIM21。总之,我们的结果表明TRIM21是参与MGF300-2R降解IKKβ的E3泛素连接酶,从而增强我们对MGF300-2R功能的理解,并提供对减毒活疫苗的合理设计和针对ASF的抗病毒策略的见解。
    African swine fever (ASF) is an acute, hemorrhagic, highly contagious disease in pigs caused by African swine fever virus (ASFV). Our previous study identified that the ASFV MGF300-2R protein functions as a virulence factor and found that MGF300-2R degrades IKKβ via selective autophagy. However, the E3 ubiquitin ligase responsible for IKKβ ubiquitination during autophagic degradation still remains unknown. In order to solve this problem, we first pulled down 328 proteins interacting with MGF300-2R through immunoprecipitation-mass spectrometry. Next, we analyzed and confirmed the interaction between the E3 ubiquitin ligase TRIM21 and MGF300-2R and demonstrated the catalytic role of TRIM21 in IKKβ ubiquitination. Finally, we indicated that the degradation of IKKβ by MGF300-2R was dependent on TRIM21. In summary, our results indicate TRIM21 is the E3 ubiquitin ligase involved in the degradation of IKKβ by MGF300-2R, thereby augmenting our understanding of the functions of MGF300-2R and offering insights into the rational design of live attenuated vaccines and antiviral strategies against ASF.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    黄瓜花叶病毒(CMV)对全球辣椒种植构成重大威胁,导致严重的产量损失。我们在CMV抗性(PBC688)和易感(G29)辣椒种质之间进行了转录比较研究,以了解CMV抗性的机制。PBC688能有效抑制CMV的增殖和传播,而G29表现出更高的病毒积累。转录组分析显示两种基因型之间的基因表达存在实质性差异,特别是在与植物-病原体相互作用相关的途径中,MAP激酶,核糖体,和光合作用。在G29中,对CMV的抗性涉及与钙结合蛋白相关的关键基因,发病机制相关蛋白,和抗病性。然而,在PBC688中,促成CMV抗性的关键基因是核糖体和叶绿素a-b结合蛋白。激素信号转导通路,如乙烯(ET)和脱落酸(ABA),表现出不同的表达模式,表明辣椒的CMV抗性与ET和ABA有关。这些发现加深了我们对辣椒抗CMV的理解,促进未来的研究和品种改良。
    The Cucumber mosaic virus (CMV) presents a significant threat to pepper cultivation worldwide, leading to substantial yield losses. We conducted a transcriptional comparative study between CMV-resistant (PBC688) and -susceptible (G29) pepper accessions to understand the mechanisms of CMV resistance. PBC688 effectively suppressed CMV proliferation and spread, while G29 exhibited higher viral accumulation. A transcriptome analysis revealed substantial differences in gene expressions between the two genotypes, particularly in pathways related to plant-pathogen interactions, MAP kinase, ribosomes, and photosynthesis. In G29, the resistance to CMV involved key genes associated with calcium-binding proteins, pathogenesis-related proteins, and disease resistance. However, in PBC688, the crucial genes contributing to CMV resistance were ribosomal and chlorophyll a-b binding proteins. Hormone signal transduction pathways, such as ethylene (ET) and abscisic acid (ABA), displayed distinct expression patterns, suggesting that CMV resistance in peppers is associated with ET and ABA. These findings deepen our understanding of CMV resistance in peppers, facilitating future research and variety improvement.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    病毒感染构成重大公共卫生挑战,以SARS-CoV-2引起的COVID-19的全球影响为例。了解控制病毒与宿主相互作用的复杂分子机制对于有效的干预策略至关重要。尽管关于病毒感染的多维数据越来越多,一个集中的数据库阐明宿主对病毒的反应仍然缺乏。作为回应,我们开发了一个名为“MOI”的综合数据库(可在http://www上获得。Fynn-Guo.cn/),专门设计用于汇总与病毒感染相关的多组学数据。这个精心策划的数据库是对病毒-宿主相互作用进行详细调查的宝贵资源。利用来自PubMed和基因表达综合(GEO)的高通量测序数据和元数据,MOI包括超过3200个病毒感染的样本,包括人类和鼠类感染。标准化的处理管道确保数据完整性,包括批量RNA测序(RNA-seq),单细胞RNA-seq(scRNA-seq),染色质免疫沉淀测序(ChIP-seq),和使用测序(ATAC-seq)测定转座酶-可接近的染色质。MOI提供用户友好的界面,提供全面的细胞标记表,基因表达数据,和表观遗传景观图表。DNA序列转换的分析工具,FPKM计算,差异基因表达,和基因本体论(GO)/京都基因和基因组百科全书(KEGG)富集增强数据解释。此外,MOI为直观的数据探索提供了16个可视化图。总之,MOI是研究人员调查病毒-宿主相互作用的有价值的存储库。通过集中和促进对多组数据的访问,MOI旨在促进我们对病毒发病机理的理解,并加快治疗干预措施的发展。
    Viral infections pose significant public health challenges, exemplified by the global impact of COVID-19 caused by SARS-CoV-2. Understanding the intricate molecular mechanisms governing virus-host interactions is pivotal for effective intervention strategies. Despite the burgeoning multi-omics data on viral infections, a centralized database elucidating host responses to viruses remains lacking. In response, we have developed a comprehensive database named \'MOI\' (available at http://www.fynn-guo.cn/ ), specifically designed to aggregate processed Multi-Omics data related to viral Infections. This meticulously curated database serves as a valuable resource for conducting detailed investigations into virus-host interactions. Leveraging high-throughput sequencing data and metadata from PubMed and Gene Expression Omnibus (GEO), MOI comprises over 3200 viral-infected samples, encompassing human and murine infections. Standardized processing pipelines ensure data integrity, including bulk RNA sequencing (RNA-seq), single-cell RNA-seq (scRNA-seq), Chromatin Immunoprecipitation sequencing (ChIP-seq), and Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq). MOI offers user-friendly interfaces presenting comprehensive cell marker tables, gene expression data, and epigenetic landscape charts. Analytical tools for DNA sequence conversion, FPKM calculation, differential gene expression, and Gene Ontology (GO)/ Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment enhance data interpretation. Additionally, MOI provides 16 visualization plots for intuitive data exploration. In summary, MOI serves as a valuable repository for researchers investigating virus-host interactions. By centralizing and facilitating access to multi-omics data, MOI aims to advance our understanding of viral pathogenesis and expedite the development of therapeutic interventions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    呼吸系统中的神经免疫识别和调节是一个复杂且高度协调的过程,涉及神经和免疫系统之间的相互作用以检测和响应病原体。污染物和呼吸道中的其他潜在危害。这种相互作用有助于维持呼吸系统的健康和完整性。因此,了解呼吸神经系统和免疫系统之间的复杂相互作用对于维持肺部健康和开发呼吸系统疾病的治疗至关重要。在这次审查中,我们总结了不同类型神经元的投影分布(三叉神经,舌咽神经,迷走神经,脊髓背根神经,交感神经)在呼吸道中。我们还介绍了呼吸道上皮中与神经紧密相互作用的几种细胞(肺神经内分泌细胞,刷细胞,孤立的化学感应细胞和味蕾)。这些细胞主要位于呼吸道的关键位置,神经投射到他们身上,形成神经上皮识别单元,从而提高神经识别能力。此外,我们总结了这些不同神经元在感知或响应特定病原体(流感,严重急性呼吸道综合征冠状病毒2,呼吸道合胞病毒,人类偏肺病毒,疱疹病毒,仙台副流感病毒,结核分枝杆菌,铜绿假单胞菌,金黄色葡萄球菌,变形虫),过敏原,大气污染物(吸烟,排气污染),以及它们在调节不同病原体之间相互作用中的潜在作用。我们还总结了生物电子医学作为继药物和手术之后的第三种治疗方法的前景。以及冥想呼吸作为辅助疗法的潜在机制。
    Neuroimmune recognition and regulation in the respiratory system is a complex and highly coordinated process involving interactions between the nervous and immune systems to detect and respond to pathogens, pollutants and other potential hazards in the respiratory tract. This interaction helps maintain the health and integrity of the respiratory system. Therefore, understanding the complex interactions between the respiratory nervous system and immune system is critical to maintaining lung health and developing treatments for respiratory diseases. In this review, we summarise the projection distribution of different types of neurons (trigeminal nerve, glossopharyngeal nerve, vagus nerve, spinal dorsal root nerve, sympathetic nerve) in the respiratory tract. We also introduce several types of cells in the respiratory epithelium that closely interact with nerves (pulmonary neuroendocrine cells, brush cells, solitary chemosensory cells and tastebuds). These cells are primarily located at key positions in the respiratory tract, where nerves project to them, forming neuroepithelial recognition units, thus enhancing the ability of neural recognition. Furthermore, we summarise the roles played by these different neurons in sensing or responding to specific pathogens (influenza, severe acute respiratory syndrome coronavirus 2, respiratory syncytial virus, human metapneumovirus, herpes viruses, Sendai parainfluenza virus, Mycobacterium tuberculosis, Pseudomonas aeruginosa, Staphylococcus aureus, amoebae), allergens, atmospheric pollutants (smoking, exhaust pollution), and their potential roles in regulating interactions among different pathogens. We also summarise the prospects of bioelectronic medicine as a third therapeutic approach following drugs and surgery, as well as the potential mechanisms of meditation breathing as an adjunct therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在感染期间,正链RNA引起宿主细胞膜的重排,导致专门的膜结构形成,帮助病毒基因组复制。双膜囊泡(DMV),病毒诱导的膜重排产生的典型结构,是病毒复制的平台。Nidovirus,最复杂的正链RNA病毒之一,不仅有能力感染哺乳动物和少数鸟类,而且有能力感染无脊椎动物。Nidovirus具有独特的复制机制,其中它们的非结构蛋白(nsps)在DMV生物发生中起着至关重要的作用。在自噬和脂质合成通路相关宿主因子的参与下,几种病毒NSP劫持了宿主内质网(ER)的膜重排过程,高尔基体,和其他细胞器诱导DMV形成。了解DMV的形成机制及其在Nidovirus感染周期中的结构和功能对于将来开发新的有效抗病毒策略至关重要。
    During infection, positive-stranded RNA causes a rearrangement of the host cell membrane, resulting in specialized membrane structure formation aiding viral genome replication. Double-membrane vesicles (DMVs), typical structures produced by virus-induced membrane rearrangements, are platforms for viral replication. Nidoviruses, one of the most complex positive-strand RNA viruses, have the ability to infect not only mammals and a few birds but also invertebrates. Nidoviruses possess a distinctive replication mechanism, wherein their nonstructural proteins (nsps) play a crucial role in DMV biogenesis. With the participation of host factors related to autophagy and lipid synthesis pathways, several viral nsps hijack the membrane rearrangement process of host endoplasmic reticulum (ER), Golgi apparatus, and other organelles to induce DMV formation. An understanding of the mechanisms of DMV formation and its structure and function in the infectious cycle of nidovirus may be essential for the development of new and effective antiviral strategies in the future.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号