Host-pathogen interactions

宿主 - 病原体相互作用
  • 文章类型: Journal Article
    COVID-19大流行期间的研究表明,与成年人相比,儿童的鼻先天免疫反应增强。为了评估鼻腔病毒和细菌在驱动这些反应中的作用,我们进行了细胞因子分析和全面,在2021-22年接受SARS-CoV-2检测的儿童鼻咽样本中,呼吸道病毒和细菌性病原体的症状无关性检测(n=467).呼吸道病毒和/或病原体非常普遍(82%的有症状儿童和30%的无症状儿童;90%和49%的<5岁儿童)。病毒检测和载量与鼻干扰素反应生物标志物CXCL10相关,先前报道的SARS-CoV-2病毒载量与鼻干扰素反应之间的差异可通过病毒共感染来解释。细菌病原体与IL-1β和TNF升高的明显促炎反应相关,但与CXCL10无关。此外,分开1-2周收集的健康1岁儿童的配对样本显示呼吸道病毒频繁获取或清除,与粘膜免疫表型平行变化。这些发现表明,动态的宿主-病原体相互作用驱动儿童鼻先天免疫激活.
    Studies during the COVID-19 pandemic showed that children had heightened nasal innate immune responses compared with adults. To evaluate the role of nasal viruses and bacteria in driving these responses, we performed cytokine profiling and comprehensive, symptom-agnostic testing for respiratory viruses and bacterial pathobionts in nasopharyngeal samples from children tested for SARS-CoV-2 in 2021-22 (n = 467). Respiratory viruses and/or pathobionts were highly prevalent (82% of symptomatic and 30% asymptomatic children; 90 and 49% for children <5 years). Virus detection and load correlated with the nasal interferon response biomarker CXCL10, and the previously reported discrepancy between SARS-CoV-2 viral load and nasal interferon response was explained by viral coinfections. Bacterial pathobionts correlated with a distinct proinflammatory response with elevated IL-1β and TNF but not CXCL10. Furthermore, paired samples from healthy 1-year-olds collected 1-2 wk apart revealed frequent respiratory virus acquisition or clearance, with mucosal immunophenotype changing in parallel. These findings reveal that frequent, dynamic host-pathogen interactions drive nasal innate immune activation in children.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    手,脚,和口蹄疫(HFMD)是由肠道病毒71(EV71)引起的常见传染病,经常影响儿童,在某些情况下导致严重感染。总的来说,当感染发生时,身体上调炎症反应以消除病原微生物,保护宿主免受感染。然而,EV71可能抑制宿主的先天免疫以促进病毒感染。目前,尚不完全了解EV71如何劫持宿主细胞进行自身复制。Toll样受体4(TLR4),天然免疫受体,历史上与细菌内毒素诱导的炎症反应相关。然而,目前尚不清楚在EV71感染期间TLR4是否以及如何改变.在这项研究中,我们在RD中观察到TLR4蛋白和基因转录水平的降低,EV71感染后的GES-1和Vero细胞,通过RT-qPCR检测,免疫荧光染色和蛋白质印迹。此外,我们观察到MYD88的TLR4下游分子、p-NF-κBp65、p-TBK1和相关炎性细胞因子也减少,提示抗病毒先天性免疫和炎症反应被抑制。为了确定TLR4变化对EV71感染的影响,我们用TLR4激动剂或抑制剂干扰EV71感染的RD细胞,结果表明TLR4的激活抑制了EV71的复制,而抑制TLR4促进EV71复制。此外,在TLR4siRNA转染和EV71感染的RD细胞中也促进了EV71的复制。这表明EV71下调TLR4的表达可以抑制宿主的免疫防御以促进EV71的自我复制。这种新机制可能是EV71逃避宿主免疫的一种策略。
    Hand, foot, and mouth disease (HFMD) is a common infectious disease caused by enterovirus 71 (EV71) that frequently affects children, leading to severe infections in some cases. In general, when infection occurs, the body upregulates inflammatory responses to eliminate pathogenic microorganisms to protect the host from infection. However, EV71 may inhibit host\'s innate immunity to promote virus infection. At present, it is not fully understood how EV71 hijack the host cells for its own replication. Toll-like receptor 4 (TLR4), a natural immune receptor, historically associated with bacterial endotoxin-induced inflammatory responses. However, it is still unclear whether and how TLR4 is altered during EV71 infection. In this study, we observed a reduction in both TLR4 protein and gene transcript levels in RD, GES-1, and Vero cells following EV71 infection, as detected by RT-qPCR, immunofluorescence staining and western blot. Furthermore, we observed that the TLR4 downstream molecules of MYD88, p-NF-κB p65, p-TBK1 and related inflammatory cytokines were also reduced, suggesting that antiviral innate immune and inflammatory response were suppressed. To determine the impact of TLR4 changes on EV71 infection, we interfered EV71-infected RD cells with TLR4 agonist or inhibitor and the results showed that activation of TLR4 inhibited EV71 replication, while inhibition of TLR4 promote EV71 replication. Besides, EV71 replication was also promoted in TLR4 siRNA-transfected and EV71-infected RD cells. This suggests that down-regulation the expression of TLR4 by EV71 can inhibit host immune defense to promote EV71 self-replication. This novel mechanism may be a strategy for EV71 to evade host immunity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Editorial
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    坏死,最近发现的一种不同于细胞凋亡的细胞程序性死亡形式,已被证实在各种动物模型的细菌感染的发病机理中起重要作用。坏死对宿主有利,但在某些情况下,这可能是有害的。了解坏死性凋亡对细菌感染发病机制的影响,本文就不同细菌感染引起细胞坏死性凋亡的作用及分子机制进行综述。
    Necroptosis, a recently discovered form of cell-programmed death that is distinct from apoptosis, has been confirmed to play a significant role in the pathogenesis of bacterial infections in various animal models. Necroptosis is advantageous to the host, but in some cases, it can be detrimental. To understand the impact of necroptosis on the pathogenesis of bacterial infections, we described the roles and molecular mechanisms of necroptosis caused by different bacterial infections in this review.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    病毒嗜性通常与受体的使用有关,但是宿主细胞蛋白酶的使用可能是感染易感性的一个显著因素。在这里,我们回顾了人类病毒对宿主细胞蛋白酶的使用,关注那些主要有呼吸嗜性的人,特别是SARS-CoV-2.我们首先描述了呼吸道中存在的各种类型的蛋白酶,以及身体的其他地方,并掺入这些蛋白酶的靶向作为用于人类的治疗药物。宿主细胞蛋白酶也与病毒的全身传播有关,并在呼吸道外发挥重要作用;因此,我们讨论了蛋白酶如何影响人类感染谱中的病毒,旨在了解SARS-CoV-2的肺外传播。
    Viral tropism is most commonly linked to receptor use, but host cell protease use can be a notable factor in susceptibility to infection. Here we review the use of host cell proteases by human viruses, focusing on those with primarily respiratory tropism, particularly SARS-CoV-2. We first describe the various classes of proteases present in the respiratory tract, as well as elsewhere in the body, and incorporate the targeting of these proteases as therapeutic drugs for use in humans. Host cell proteases are also linked to the systemic spread of viruses and play important roles outside of the respiratory tract; therefore, we address how proteases affect viruses across the spectrum of infections that can occur in humans, intending to understand the extrapulmonary spread of SARS-CoV-2.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    非洲猪瘟(ASF)是一种急性,出血性,由非洲猪瘟病毒(ASFV)引起的猪的高度传染性疾病。我们先前的研究确定ASFVMGF300-2R蛋白作为毒力因子起作用,并发现MGF300-2R通过选择性自噬降解IKKβ。然而,在自噬降解过程中负责IKKβ泛素化的E3泛素连接酶仍然未知。为了解决这个问题,我们首先通过免疫沉淀-质谱法提取了328种与MGF300-2R相互作用的蛋白质。接下来,我们分析并证实了E3泛素连接酶TRIM21和MGF300-2R之间的相互作用,并证明了TRIM21在IKKβ泛素化中的催化作用。最后,我们表明MGF300-2R对IKKβ的降解依赖于TRIM21。总之,我们的结果表明TRIM21是参与MGF300-2R降解IKKβ的E3泛素连接酶,从而增强我们对MGF300-2R功能的理解,并提供对减毒活疫苗的合理设计和针对ASF的抗病毒策略的见解。
    African swine fever (ASF) is an acute, hemorrhagic, highly contagious disease in pigs caused by African swine fever virus (ASFV). Our previous study identified that the ASFV MGF300-2R protein functions as a virulence factor and found that MGF300-2R degrades IKKβ via selective autophagy. However, the E3 ubiquitin ligase responsible for IKKβ ubiquitination during autophagic degradation still remains unknown. In order to solve this problem, we first pulled down 328 proteins interacting with MGF300-2R through immunoprecipitation-mass spectrometry. Next, we analyzed and confirmed the interaction between the E3 ubiquitin ligase TRIM21 and MGF300-2R and demonstrated the catalytic role of TRIM21 in IKKβ ubiquitination. Finally, we indicated that the degradation of IKKβ by MGF300-2R was dependent on TRIM21. In summary, our results indicate TRIM21 is the E3 ubiquitin ligase involved in the degradation of IKKβ by MGF300-2R, thereby augmenting our understanding of the functions of MGF300-2R and offering insights into the rational design of live attenuated vaccines and antiviral strategies against ASF.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    I型干扰素(IFN-Is)通过引发IFN刺激基因(ISGs)的表达,在人类免疫缺陷病毒I(HIV-1)的先天免疫中至关重要。其中包括有效的宿主限制因子。虽然ISGs通过靶向病毒生命周期的各个阶段来限制宿主细胞内的病毒复制,鲜为人知的IFN抑制基因(IRepGs),包括RNA结合蛋白(RBPs),通过改变对有效的HIV-1基因表达至关重要的宿主依赖性因子的表达来影响病毒复制。宿主限制和依赖性因素决定了病毒复制效率;然而,目前,对与HIV-1感染有关的IRepGs的了解仍然非常有限.这篇综述提供了关于RNA结合蛋白家族影响的当前理解的全面概述。特别是剪接相关蛋白SRSF和hnRNP的两个家族,HIV-1基因表达和病毒复制。由于最近的发现特别表明SRSF1和hnRNPA0在各种细胞系和原代细胞中受到IFN-I的调节,包括肠固有层单核细胞(LPMC)和外周血单核细胞(PBMC),我们特别讨论了它们在先天免疫影响HIV-1复制的背景下的作用.
    Type I interferons (IFN-Is) are pivotal in innate immunity against human immunodeficiency virus I (HIV-1) by eliciting the expression of IFN-stimulated genes (ISGs), which encompass potent host restriction factors. While ISGs restrict the viral replication within the host cell by targeting various stages of the viral life cycle, the lesser-known IFN-repressed genes (IRepGs), including RNA-binding proteins (RBPs), affect the viral replication by altering the expression of the host dependency factors that are essential for efficient HIV-1 gene expression. Both the host restriction and dependency factors determine the viral replication efficiency; however, the understanding of the IRepGs implicated in HIV-1 infection remains greatly limited at present. This review provides a comprehensive overview of the current understanding regarding the impact of the RNA-binding protein families, specifically the two families of splicing-associated proteins SRSF and hnRNP, on HIV-1 gene expression and viral replication. Since the recent findings show specifically that SRSF1 and hnRNP A0 are regulated by IFN-I in various cell lines and primary cells, including intestinal lamina propria mononuclear cells (LPMCs) and peripheral blood mononuclear cells (PBMCs), we particularly discuss their role in the context of the innate immunity affecting HIV-1 replication.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    对纯化的狂犬病病毒(RABV)的蛋白质组学分析显示,病毒颗粒中有47种被包裹的宿主蛋白。在这些中,11种蛋白质高度无序。我们的研究特别集中在五种具有最高疾病水平的RABV捕获的小鼠蛋白质上:神经调节素,Chmp4b,DnaJB6,Vps37B,还有Wasl.我们广泛使用生物信息学工具,比如FuzDrop,D2P2,UniProt,RIDAO,STRING,AlphaFold,和ELM,全面分析这些蛋白质的内在紊乱倾向。我们的分析表明,这些无序的宿主蛋白可能在促进狂犬病病毒的致病性中起重要作用。免疫系统逃避,以及抗病毒药物耐药性的发展。我们的研究强调了病毒与其宿主的复杂相互作用,关注内在障碍如何在病毒致病过程中发挥关键作用,并表明这些内在无序蛋白(IDPs)和与疾病相关的宿主相互作用也可能是治疗策略的潜在靶标。
    A proteomics analysis of purified rabies virus (RABV) revealed 47 entrapped host proteins within the viral particles. Out of these, 11 proteins were highly disordered. Our study was particularly focused on five of the RABV-entrapped mouse proteins with the highest levels of disorder: Neuromodulin, Chmp4b, DnaJB6, Vps37B, and Wasl. We extensively utilized bioinformatics tools, such as FuzDrop, D2P2, UniProt, RIDAO, STRING, AlphaFold, and ELM, for a comprehensive analysis of the intrinsic disorder propensity of these proteins. Our analysis suggested that these disordered host proteins might play a significant role in facilitating the rabies virus pathogenicity, immune system evasion, and the development of antiviral drug resistance. Our study highlighted the complex interaction of the virus with its host, with a focus on how the intrinsic disorder can play a crucial role in virus pathogenic processes, and suggested that these intrinsically disordered proteins (IDPs) and disorder-related host interactions can also be a potential target for therapeutic strategies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    人冠状病毒229E(HCoV-229E)与上呼吸道感染有关,通常会引起轻度呼吸道症状。HCoV-229E感染可导致细胞死亡,但是导致病毒诱导的细胞死亡的分子途径以及病毒蛋白和细胞细胞死亡效应物之间的相互作用对于HCoV-229E仍然缺乏表征。研究HCoV-229E和其他常见的冷冠状病毒如何与细胞死亡途径相互作用并影响细胞死亡途径可能有助于了解其发病机理并将其与高致病性冠状病毒进行比较。这里,我们报告说,HCoV-229E的主要蛋白酶(Mpro)可以在其活性N端结构域内的两个不同位点(Q29和Q193)切割gasderminD(GSDMD),以产生现在无法引起焦亡的片段,通常由这种蛋白质执行的裂解细胞死亡的一种形式。尽管HCoV-229EMpro切割GSDMD,我们显示HCoV-229E感染仍然导致裂解细胞死亡。我们证明,在病毒感染期间,caspase-3切割并激活gasderminE(GSDME),化脓的另一个关键执行者。因此,GSDME敲除细胞在病毒感染时显示裂解细胞死亡的显著减少。最后,我们显示HCoV-229E感染导致表达Mpro不可裂解的GSDMD突变体(GSDMDQ29A+Q193A)的细胞中裂解细胞死亡水平增加.我们得出结论,GSDMD在HCoV-229E感染期间被Mpro灭活,防止GSDMD介导的细胞死亡,并指出caspase-3/GSDME轴在病毒诱导的细胞死亡的执行中具有重要作用。在高致病性冠状病毒的类似报道发现的背景下,我们的结果提示,这些机制并不导致冠状病毒间致病性的差异.尽管如此,了解普通感冒相关冠状病毒及其蛋白质与程序性细胞死亡机制的相互作用,可能为冠状病毒控制策略提供新的线索.
    Human coronavirus 229E (HCoV-229E) is associated with upper respiratory tract infections and generally causes mild respiratory symptoms. HCoV-229E infection can cause cell death, but the molecular pathways that lead to virus-induced cell death as well as the interplay between viral proteins and cellular cell death effectors remain poorly characterized for HCoV-229E. Studying how HCoV-229E and other common cold coronaviruses interact with and affect cell death pathways may help to understand its pathogenesis and compare it to that of highly pathogenic coronaviruses. Here, we report that the main protease (Mpro) of HCoV-229E can cleave gasdermin D (GSDMD) at two different sites (Q29 and Q193) within its active N-terminal domain to generate fragments that are now unable to cause pyroptosis, a form of lytic cell death normally executed by this protein. Despite GSDMD cleavage by HCoV-229E Mpro, we show that HCoV-229E infection still leads to lytic cell death. We demonstrate that during virus infection caspase-3 cleaves and activates gasdermin E (GSDME), another key executioner of pyroptosis. Accordingly, GSDME knockout cells show a significant decrease in lytic cell death upon virus infection. Finally, we show that HCoV-229E infection leads to increased lytic cell death levels in cells expressing a GSDMD mutant uncleavable by Mpro (GSDMD Q29A+Q193A). We conclude that GSDMD is inactivated by Mpro during HCoV-229E infection, preventing GSDMD-mediated cell death, and point to the caspase-3/GSDME axis as an important player in the execution of virus-induced cell death. In the context of similar reported findings for highly pathogenic coronaviruses, our results suggest that these mechanisms do not contribute to differences in pathogenicity among coronaviruses. Nonetheless, understanding the interactions of common cold-associated coronaviruses and their proteins with the programmed cell death machineries may lead to new clues for coronavirus control strategies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    病毒利用宿主细胞机制来实现感染和繁殖。这篇综述讨论了DNA病毒与宿主相互作用的复杂景观,主要关注疱疹病毒和腺病毒,在受感染细胞的细胞核中复制,和牛痘病毒,在细胞质中复制。我们讨论了用于发现和验证宿主蛋白与病毒基因组相互作用的实验方法,以及这些相互作用如何影响感染过程中发生的过程。包括宿主DNA损伤反应和病毒基因组复制,修复,和转录。我们重点介绍了有关病毒-宿主蛋白相互作用的知识现状,并概述了新兴领域和未来的研究方向。
    Viruses exploit the host cell machinery to enable infection and propagation. This review discusses the complex landscape of DNA virus-host interactions, focusing primarily on herpesviruses and adenoviruses, which replicate in the nucleus of infected cells, and vaccinia virus, which replicates in the cytoplasm. We discuss experimental approaches used to discover and validate interactions of host proteins with viral genomes and how these interactions impact processes that occur during infection, including the host DNA damage response and viral genome replication, repair, and transcription. We highlight the current state of knowledge regarding virus-host protein interactions and also outline emerging areas and future directions for research.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号