Heterochromatin

异染色质
  • 文章类型: Journal Article
    将亲本组蛋白忠实地转移到新复制的子DNA链对于表观遗传状态的遗传至关重要。尽管已经确定了促进亲本组蛋白转移的复制蛋白,完整的组蛋白H3-H4四聚体如何从复制叉的前部行进到后部仍然未知。这里,我们使用AlphaFold-Multimer结构预测结合生化和遗传方法来鉴定复制体的Mrc1/CLASPIN亚基作为组蛋白伴侣。Mrc1包含一个保守的组蛋白结合域,在H3-H4四聚体周围形成一个支撑,模拟核小体DNA和H2A-H2B组蛋白,是异染色质遗传所必需的,并在复制过程中促进亲本组蛋白回收。我们进一步确定了Swi1/TIMELESS和DNA聚合酶α中异染色质遗传所需的FACT组蛋白伴侣的结合位点。我们建议Mrc1与FACT一起充当移动伴侣,协调亲本组蛋白与新复制的DNA的分布。
    Faithful transfer of parental histones to newly replicated daughter DNA strands is critical for inheritance of epigenetic states. Although replication proteins that facilitate parental histone transfer have been identified, how intact histone H3-H4 tetramers travel from the front to the back of the replication fork remains unknown. Here, we use AlphaFold-Multimer structural predictions combined with biochemical and genetic approaches to identify the Mrc1/CLASPIN subunit of the replisome as a histone chaperone. Mrc1 contains a conserved histone-binding domain that forms a brace around the H3-H4 tetramer mimicking nucleosomal DNA and H2A-H2B histones, is required for heterochromatin inheritance, and promotes parental histone recycling during replication. We further identify binding sites for the FACT histone chaperone in Swi1/TIMELESS and DNA polymerase α that are required for heterochromatin inheritance. We propose that Mrc1, in concert with FACT acting as a mobile co-chaperone, coordinates the distribution of parental histones to newly replicated DNA.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    基于染色质的表观遗传记忆依赖于亲本组蛋白与新合成的子DNA链的对称分布,由DNA复制机制中的组蛋白伴侣帮助。然而,亲本组蛋白转移的机制仍然难以捉摸。这里,我们发现在裂变酵母中,复制体蛋白Mrc1在促进亲本组蛋白H3-H4向滞后链的转移中起着至关重要的作用,确保适当的异染色质遗传。此外,Mrc1促进Mcm2和DNA聚合酶α之间的相互作用,两种对亲本组蛋白转移至关重要的组蛋白结合蛋白。此外,Mrc1参与亲本组蛋白转移和表观遗传独立于其在DNA复制检查点激活和复制体速度控制中的已知功能。相反,Mrc1在其组蛋白结合区之外与Mcm2相互作用,为分离的亲本组蛋白转移途径创造物理障碍。这些发现揭示了Mrc1是复制体中的关键角色,协调亲本组蛋白分离以调节表观遗传。
    Chromatin-based epigenetic memory relies on the symmetric distribution of parental histones to newly synthesized daughter DNA strands, aided by histone chaperones within the DNA replication machinery. However, the mechanism of parental histone transfer remains elusive. Here, we reveal that in fission yeast, the replisome protein Mrc1 plays a crucial role in promoting the transfer of parental histone H3-H4 to the lagging strand, ensuring proper heterochromatin inheritance. In addition, Mrc1 facilitates the interaction between Mcm2 and DNA polymerase alpha, two histone-binding proteins critical for parental histone transfer. Furthermore, Mrc1\'s involvement in parental histone transfer and epigenetic inheritance is independent of its known functions in DNA replication checkpoint activation and replisome speed control. Instead, Mrc1 interacts with Mcm2 outside of its histone-binding region, creating a physical barrier to separate parental histone transfer pathways. These findings unveil Mrc1 as a key player within the replisome, coordinating parental histone segregation to regulate epigenetic inheritance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    近年来,基因组三维(3D)构象的探索对动物和植物的基因表达和细胞功能的调节产生了深刻的见解。虽然动物表现出通过拓扑关联域(TAD)定义的特征性基因组拓扑,植物表现出相似的特征,物种之间的构象更加多样化。采用先进的高通量测序和显微镜技术,我们调查了番茄(Solanumlycopersicum)中26种组蛋白修饰和RNA聚合酶II分布的景观。我们的研究揭示了一个丰富而微妙的表观遗传景观,在与异染色质形成和基因沉默相关的不同染色质状态上发光。此外,我们阐明了这些染色质状态与基因组整体拓扑结构之间复杂的相互作用.采用遗传方法,我们探讨了组蛋白修饰H3K9ac在基因组拓扑结构中的作用。值得注意的是,我们的调查显示,这种染色质标记的异位沉积引发了3D染色质结构的重组,定义不同的类TAD边界。我们的工作强调了H3K9ac在塑造番茄基因组拓扑结构中的关键作用,为这种具有农业意义的作物物种的表观遗传景观提供有价值的见解。
    In recent years, the exploration of genome three-dimensional (3D) conformation has yielded profound insights into the regulation of gene expression and cellular functions in both animals and plants. While animals exhibit a characteristic genome topology defined by topologically associating domains (TADs), plants display similar features with a more diverse conformation across species. Employing advanced high-throughput sequencing and microscopy techniques, we investigated the landscape of 26 histone modifications and RNA polymerase II distribution in tomato (Solanum lycopersicum). Our study unveiled a rich and nuanced epigenetic landscape, shedding light on distinct chromatin states associated with heterochromatin formation and gene silencing. Moreover, we elucidated the intricate interplay between these chromatin states and the overall topology of the genome. Employing a genetic approach, we delved into the role of the histone modification H3K9ac in genome topology. Notably, our investigation revealed that the ectopic deposition of this chromatin mark triggered a reorganization of the 3D chromatin structure, defining different TAD-like borders. Our work emphasizes the critical role of H3K9ac in shaping the topology of the tomato genome, providing valuable insights into the epigenetic landscape of this agriculturally significant crop species.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    外周异染色质是组蛋白H3K9(H3K9)甲基化1-3标记的染色体的关键成分。然而,什么将H3K9特异性组蛋白甲基转移酶招募到脊椎动物的外周区域仍不清楚4,为什么不同物种的外周区域尽管缺乏高度保守的DNA序列,但共享相同的H3K9甲基化标记2,5。在这里,我们显示锌指蛋白ZNF512和ZNF512B通过直接DNA结合特异性定位于外周区域。值得注意的是,ZNF512和ZNF512B都足以在异位靶向的重复区和外周区开始从头形成异染色质,因为他们直接招募SUV39H1和SUV39H2(SUV39H)来催化H3K9甲基化。SUV39H2对H3K9三甲基化做出了更大的贡献,而SUV39H1似乎更有助于沉默,可能是由于其与HP1蛋白的优先关联。来自不同物种的ZNF512和ZNF512B可以特异性地靶向其他脊椎动物的周心区域,因为ZNF512和ZNF512B的锌指之间的非典型长接头残基为识别每个锌指靶向的非连续组织的三核苷酸三联体提供了灵活性。这项研究解决了两个长期存在的问题:组成型异染色质是如何启动的,以及脊椎动物中同一组保守机制如何靶向看似可变的外周序列。
    Pericentric heterochromatin is a critical component of chromosomes marked by histone H3 K9 (H3K9) methylation1-3. However, what recruits H3K9-specific histone methyltransferases to pericentric regions in vertebrates remains unclear4, as does why pericentric regions in different species share the same H3K9 methylation mark despite lacking highly conserved DNA sequences2,5. Here we show that zinc-finger proteins ZNF512 and ZNF512B specifically localize at pericentric regions through direct DNA binding. Notably, both ZNF512 and ZNF512B are sufficient to initiate de novo heterochromatin formation at ectopically targeted repetitive regions and pericentric regions, as they directly recruit SUV39H1 and SUV39H2 (SUV39H) to catalyse H3K9 methylation. SUV39H2 makes a greater contribution to H3K9 trimethylation, whereas SUV39H1 seems to contribute more to silencing, probably owing to its preferential association with HP1 proteins. ZNF512 and ZNF512B from different species can specifically target pericentric regions of other vertebrates, because the atypical long linker residues between the zinc-fingers of ZNF512 and ZNF512B offer flexibility in recognition of non-consecutively organized three-nucleotide triplets targeted by each zinc-finger. This study addresses two long-standing questions: how constitutive heterochromatin is initiated and how seemingly variable pericentric sequences are targeted by the same set of conserved machinery in vertebrates.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    SWI/SNF2染色质重塑因子降低的DNA甲基化1(DDM1)对于常色和异色区域的转座因子(TE)的沉默至关重要。这里,我们确定了DDM1-核小体H2A和DDM1-核小体H2A的低温EM结构。在ATP类似物ADP-BeFx的存在下,W复合物的原子分辨率接近。结构表明,与含有组蛋白H2A的组蛋白八聚体相比,核小体DNA在含有组蛋白H2A的组蛋白八聚体表面上的解包更多。DDM1包含核小体的一个DNA回旋,并与组蛋白H4的N末端尾巴相互作用。虽然我们没有观察到DDM1-H2A。我们结构中的相互作用,下拉实验的结果表明DDM1与组蛋白H2A.W.的核心区域之间存在直接相互作用。我们的工作提供了对植物中DDM1驱动的异染色质重塑过程的机械见解。
    The SWI/SNF2 chromatin remodeling factor decreased DNA methylation 1 (DDM1) is essential for the silencing of transposable elements (TEs) in both euchromatic and heterochromatic regions. Here, we determined the cryo-EM structures of DDM1-nucleosomeH2A and DDM1-nucleosomeH2A.W complexes at near-atomic resolution in the presence of the ATP analog ADP-BeFx. The structures show that nucleosomal DNA is unwrapped more on the surface of the histone octamer containing histone H2A than that containing histone H2A.W. DDM1 embraces one DNA gyre of the nucleosome and interacts with the N-terminal tails of histone H4. Although we did not observe DDM1-H2A.W interactions in our structures, the results of the pull-down experiments suggest a direct interaction between DDM1 and the core region of histone H2A.W. Our work provides mechanistic insights into the heterochromatin remodeling process driven by DDM1 in plants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在有丝分裂期间,凝缩素活性被认为会干扰相间染色质结构。为了研究在没有染色质环挤出的情况下的基因组折叠原理,我们编码了凝析素I和凝析素II,以类似于间期的方式触发有丝分裂染色体区隔。然而,两个不同的常色隔室,在相间无法区分,凝析素损失时出现,具有不同的相互作用偏好和对H3K27ac的依赖性。组成性异染色质逐渐自聚集并与兼性异染色质共同分隔,与它们在相间的分离形成对比。值得注意的是,即使没有CTCF/粘附素介导的结构,一些顺式调控元件接触也变得明显.异染色质蛋白1(HP1)蛋白,它们被认为是划分组成性异染色质的,从有丝分裂染色体中缺失,暗示,令人惊讶的是,组成型异染色质可以在没有HP1的情况下自我聚集。的确,在合并不存在HP1α的情况下,从M到G1期的细胞中,HP1β和HP1γ,组成性异染色质区室通常会重新建立。总之,凝缩素缺陷的有丝分裂染色体阐明了在间期细胞中未发现的基因组区室化的力量。
    During mitosis, condensin activity is thought to interfere with interphase chromatin structures. To investigate genome folding principles in the absence of chromatin loop extrusion, we codepleted condensin I and condensin II, which triggered mitotic chromosome compartmentalization in ways similar to that in interphase. However, two distinct euchromatic compartments, indistinguishable in interphase, emerged upon condensin loss with different interaction preferences and dependencies on H3K27ac. Constitutive heterochromatin gradually self-aggregated and cocompartmentalized with facultative heterochromatin, contrasting with their separation during interphase. Notably, some cis-regulatory element contacts became apparent even in the absence of CTCF/cohesin-mediated structures. Heterochromatin protein 1 (HP1) proteins, which are thought to partition constitutive heterochromatin, were absent from mitotic chromosomes, suggesting, surprisingly, that constitutive heterochromatin can self-aggregate without HP1. Indeed, in cells traversing from M to G1 phase in the combined absence of HP1α, HP1β and HP1γ, constitutive heterochromatin compartments are normally re-established. In sum, condensin-deficient mitotic chromosomes illuminate forces of genome compartmentalization not identified in interphase cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    异染色质通常与核外围有关,但是如何调节异染色质的空间组织以确保表观遗传沉默仍不清楚。在这里,我们发现Sad1,裂殖酵母的内核膜SUN家族蛋白,与组蛋白H2A-H2B相互作用,但不与H3-H4相互作用。我们解决了与H2A-H2B复合物中Sad1的组蛋白结合基序(HBM)的晶体结构,揭示了Sad1HBM和H2A-H2B之间的密切接触。基于结构的诱变研究表明,Sad1的H2A-H2B结合活性是Sad1在整个核膜(NE)中动态分布所必需的。Sad1-H2A-H2B复合物介导将端粒和交配型基因座连接到NE。该复合物对于异染色质沉默也是重要的。机械上,H2A-H2B增强了Sad1和HDAC之间的相互作用,包括Clr3和Sir2,以保持异染色质的表观遗传同一性。有趣的是,我们的结果表明,Sad1表现出组蛋白增强的液-液相分离性质,这有助于向NE招募异染色质因子。我们的结果揭示了SUN家族蛋白在异染色质调节中的意外作用,并暗示了H2A-H2B在调节Sad1功能中的独立于核小体的作用。
    Heterochromatin is generally associated with the nuclear periphery, but how the spatial organization of heterochromatin is regulated to ensure epigenetic silencing remains unclear. Here we found that Sad1, an inner nuclear membrane SUN-family protein in fission yeast, interacts with histone H2A-H2B but not H3-H4. We solved the crystal structure of the histone binding motif (HBM) of Sad1 in complex with H2A-H2B, revealing the intimate contacts between Sad1HBM and H2A-H2B. Structure-based mutagenesis studies revealed that the H2A-H2B-binding activity of Sad1 is required for the dynamic distribution of Sad1 throughout the nuclear envelope (NE). The Sad1-H2A-H2B complex mediates tethering telomeres and the mating-type locus to the NE. This complex is also important for heterochromatin silencing. Mechanistically, H2A-H2B enhances the interaction between Sad1 and HDACs, including Clr3 and Sir2, to maintain epigenetic identity of heterochromatin. Interestingly, our results suggest that Sad1 exhibits the histone-enhanced liquid-liquid phase separation property, which helps recruit heterochromatin factors to the NE. Our results uncover an unexpected role of SUN-family proteins in heterochromatin regulation and suggest a nucleosome-independent role of H2A-H2B in regulating Sad1\'s functionality.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:具有不同转录谱的胚胎干细胞(ESC)的多能状态影响ESC分化能力和治疗潜力。尽管单细胞RNA测序已经揭示了初始和引发的人类多能干细胞(hPSC)的其他亚群和特定特征,调节其特定转录和控制其多能状态的潜在机制仍然难以捉摸。
    结果:通过高分辨率的单细胞分析,三维(3D)基因组结构,我们在此证明基因组结构的重塑与人ESC(hESC)的多能状态高度相关。幼稚多能状态的特征是具有专门的3D基因组结构和与引发状态不同的清晰染色质区室化。幼稚多能状态是通过重塑活性常染色质区室和减少核中心的染色质相互作用来实现的。这种独特的基因组组织与增强子上增强的染色质可及性和位于该区域的幼稚多能基因的表达水平升高有关。相反,启动状态表现出混合的基因组组织。此外,活跃的常染色质和引发的多能基因分布在核外围,而抑制性异染色质密集地集中在核中心,降低染色质可及性和幼稚基因的转录。
    结论:我们的数据提供了对初始和初始状态下ESCs染色质结构的见解,我们确定了转录和染色质结构修饰的特定模式,这些模式可能解释了幼稚和已引发的hESC之间差异表达的基因。因此,异染色质通过区室化向常染色质的反转或重新定位与染色质可及性的调节有关,从而定义多能状态和细胞身份。
    Pluripotent states of embryonic stem cells (ESCs) with distinct transcriptional profiles affect ESC differentiative capacity and therapeutic potential. Although single-cell RNA sequencing has revealed additional subpopulations and specific features of naive and primed human pluripotent stem cells (hPSCs), the underlying mechanisms that regulate their specific transcription and that control their pluripotent states remain elusive.
    By single-cell analysis of high-resolution, three-dimensional (3D) genomic structure, we herein demonstrate that remodeling of genomic structure is highly associated with the pluripotent states of human ESCs (hESCs). The naive pluripotent state is featured with specialized 3D genomic structures and clear chromatin compartmentalization that is distinct from the primed state. The naive pluripotent state is achieved by remodeling the active euchromatin compartment and reducing chromatin interactions at the nuclear center. This unique genomic organization is linked to enhanced chromatin accessibility on enhancers and elevated expression levels of naive pluripotent genes localized to this region. In contradistinction, the primed state exhibits intermingled genomic organization. Moreover, active euchromatin and primed pluripotent genes are distributed at the nuclear periphery, while repressive heterochromatin is densely concentrated at the nuclear center, reducing chromatin accessibility and the transcription of naive genes.
    Our data provide insights into the chromatin structure of ESCs in their naive and primed states, and we identify specific patterns of modifications in transcription and chromatin structure that might explain the genes that are differentially expressed between naive and primed hESCs. Thus, the inversion or relocation of heterochromatin to euchromatin via compartmentalization is related to the regulation of chromatin accessibility, thereby defining pluripotent states and cellular identity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    作为mRNA中研究最充分的修饰,M6A已被证明可以调节多种生物过程,包括RNA降解,processing,和翻译。最近的研究表明,m6A修饰富含染色质相关RNA和新生RNA,提示m6A可能在染色质环境中发挥调节作用。的确,在过去的几年里,许多研究阐明了m6A及其调节剂如何调节不同类型的染色质状态。具体来说,在过去的2-3年里,一些研究发现了m6A和/或其调节剂在调节组成型和兼性异染色质中的作用,揭示哺乳动物细胞中RNA依赖性异染色质形成的有趣光。这篇综述将总结和讨论m6A在不同类型异染色质中的调控机制。特别强调哺乳动物胚胎干细胞的调控,表现出多个异染色质标记的不同特征。
    As the most well-studied modification in mRNA, m6A has been shown to regulate multiple biological processes, including RNA degradation, processing, and translation. Recent studies showed that m6A modification is enriched in chromatin-associated RNAs and nascent RNAs, suggesting m6A might play regulatory roles in chromatin contexts. Indeed, in the past several years, a number of studies have clarified how m6A and its modulators regulate different types of chromatin states. Specifically, in the past 2-3 years, several studies discovered the roles of m6A and/or its modulators in regulating constitutive and facultative heterochromatin, shedding interesting lights on RNA-dependent heterochromatin formation in mammalian cells. This review will summarize and discuss the mechanisms underlying m6A\'s regulation in different types of heterochromatin, with a specific emphasis on the regulation in mammalian embryonic stem cells, which exhibit distinct features of multiple heterochromatin marks.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    胚胎,起源于受精卵,经历连续的细胞分裂和分化,伴随着转录的戏剧性变化,翻译,和新陈代谢。染色质调节剂,包括转录因子(TFs),在规范这些过程中发挥着不可或缺的作用。最近,滋养细胞调节因子TFAP2C被认为是启动早期细胞命运决定的关键.然而,Tfap2c转录本持续存在于胚泡的内细胞团和滋养外胚层,提示询问Tfap2c\在血统建立后的功能。在这项研究中,我们描述了TFAP2C在小鼠围植入期的动力学,并阐明了其与关键谱系调节因子CDX2和NANOG的协同作用.重要的是,我们认为在胚胎外胚层植入过程中H3K9me3的从头形成拮抗TFAP2C与关键发育基因的结合,从而保持其血统身份。一起,这些结果强调了染色质环境在指定高度适应性谱系特异性TFs的基因组结合和调节胚胎细胞命运方面的可塑性。
    Embryos, originating from fertilized eggs, undergo continuous cell division and differentiation, accompanied by dramatic changes in transcription, translation, and metabolism. Chromatin regulators, including transcription factors (TFs), play indispensable roles in regulating these processes. Recently, the trophoblast regulator TFAP2C was identified as crucial in initiating early cell fate decisions. However, Tfap2c transcripts persist in both the inner cell mass and trophectoderm of blastocysts, prompting inquiry into Tfap2c\'s function in post-lineage establishment. In this study, we delineate the dynamics of TFAP2C during the mouse peri-implantation stage and elucidate its collaboration with the key lineage regulators CDX2 and NANOG. Importantly, we propose that de novo formation of H3K9me3 in the extraembryonic ectoderm during implantation antagonizes TFAP2C binding to crucial developmental genes, thereby maintaining its lineage identity. Together, these results highlight the plasticity of the chromatin environment in designating the genomic binding of highly adaptable lineage-specific TFs and regulating embryonic cell fates.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号