Heterochromatin

异染色质
  • 文章类型: Journal Article
    DNA甲基化之间的功能串扰,组蛋白H3赖氨酸-9三甲基化(H3K9me3)和异染色质蛋白1(HP1)对于适当的异染色质组装和基因组稳定性至关重要。然而,抑制性染色质线索如何指导DNA甲基转移酶进行区域特异性DNA甲基化仍在很大程度上未知.这里,我们报道了神经孢菌DNA甲基转移酶在甲基化缺陷-2(DIM2)中的结构-功能特征。DIM2的DNA甲基化活性需要同时存在H3K9me3和HP1。我们的结构研究揭示了二分DIM2-HP1相互作用,导致对底物结合至关重要的DIM2靶识别域的无序转换。此外,DIM2-HP1-H3K9me3-DNA复合物的结构揭示了与其哺乳动物直向同源物DNMT1不同的底物结合机制。此外,DIM2RFTS和BAH1结构域对H3K9me3肽的双重识别变构地影响DIM2-底物结合,从而控制DIM2介导的DNA甲基化。一起,这项研究揭示了多种异染色质因子如何协调区域特异性DNA甲基化的活性转换机制.
    Functional crosstalk between DNA methylation, histone H3 lysine-9 trimethylation (H3K9me3) and heterochromatin protein 1 (HP1) is essential for proper heterochromatin assembly and genome stability. However, how repressive chromatin cues guide DNA methyltransferases for region-specific DNA methylation remains largely unknown. Here, we report structure-function characterizations of DNA methyltransferase Defective-In-Methylation-2 (DIM2) in Neurospora. The DNA methylation activity of DIM2 requires the presence of both H3K9me3 and HP1. Our structural study reveals a bipartite DIM2-HP1 interaction, leading to a disorder-to-order transition of the DIM2 target-recognition domain that is essential for substrate binding. Furthermore, the structure of DIM2-HP1-H3K9me3-DNA complex reveals a substrate-binding mechanism distinct from that for its mammalian orthologue DNMT1. In addition, the dual recognition of H3K9me3 peptide by the DIM2 RFTS and BAH1 domains allosterically impacts the DIM2-substrate binding, thereby controlling DIM2-mediated DNA methylation. Together, this study uncovers how multiple heterochromatin factors coordinately orchestrate an activity-switching mechanism for region-specific DNA methylation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    异染色质强制转录基因沉默,并且可以是表观遗传的,但潜在的机制仍不清楚。这里,我们显示组蛋白去乙酰化,异染色质结构域的保守特征,阻断参与染色质分解的SWI/SNF亚家族重塑,从而稳定保留基因沉默的修饰的核小体。组蛋白高乙酰化,由于组蛋白脱乙酰酶(HDAC)活性的丧失或组蛋白乙酰转移酶直接靶向异染色质,允许改造者进入,导致沉默缺陷。可以通过阻碍SWI/SNF活性来绕过在异染色质沉默中对HDAC的要求。突出改造者的关键作用,仅将SWI/SNF靶向异染色质,即使在具有功能性HDAC的细胞中,增加核小体周转,导致有缺陷的基因沉默和受损的表观遗传。这项研究阐明了组蛋白低乙酰化的基本机制,由异色区的高HDAC水平维持,确保稳定的基因沉默和表观遗传,提供与人类疾病相关的基因组调控机制的见解。
    Heterochromatin enforces transcriptional gene silencing and can be epigenetically inherited, but the underlying mechanisms remain unclear. Here, we show that histone deacetylation, a conserved feature of heterochromatin domains, blocks SWI/SNF subfamily remodelers involved in chromatin unraveling, thereby stabilizing modified nucleosomes that preserve gene silencing. Histone hyperacetylation, resulting from either the loss of histone deacetylase (HDAC) activity or the direct targeting of a histone acetyltransferase to heterochromatin, permits remodeler access, leading to silencing defects. The requirement for HDAC in heterochromatin silencing can be bypassed by impeding SWI/SNF activity. Highlighting the crucial role of remodelers, merely targeting SWI/SNF to heterochromatin, even in cells with functional HDAC, increases nucleosome turnover, causing defective gene silencing and compromised epigenetic inheritance. This study elucidates a fundamental mechanism whereby histone hypoacetylation, maintained by high HDAC levels in heterochromatic regions, ensures stable gene silencing and epigenetic inheritance, providing insights into genome regulatory mechanisms relevant to human diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    将亲本组蛋白忠实地转移到新复制的子DNA链对于表观遗传状态的遗传至关重要。尽管已经确定了促进亲本组蛋白转移的复制蛋白,完整的组蛋白H3-H4四聚体如何从复制叉的前部行进到后部仍然未知。这里,我们使用AlphaFold-Multimer结构预测结合生化和遗传方法来鉴定复制体的Mrc1/CLASPIN亚基作为组蛋白伴侣。Mrc1包含一个保守的组蛋白结合域,在H3-H4四聚体周围形成一个支撑,模拟核小体DNA和H2A-H2B组蛋白,是异染色质遗传所必需的,并在复制过程中促进亲本组蛋白回收。我们进一步确定了Swi1/TIMELESS和DNA聚合酶α中异染色质遗传所需的FACT组蛋白伴侣的结合位点。我们建议Mrc1与FACT一起充当移动伴侣,协调亲本组蛋白与新复制的DNA的分布。
    Faithful transfer of parental histones to newly replicated daughter DNA strands is critical for inheritance of epigenetic states. Although replication proteins that facilitate parental histone transfer have been identified, how intact histone H3-H4 tetramers travel from the front to the back of the replication fork remains unknown. Here, we use AlphaFold-Multimer structural predictions combined with biochemical and genetic approaches to identify the Mrc1/CLASPIN subunit of the replisome as a histone chaperone. Mrc1 contains a conserved histone-binding domain that forms a brace around the H3-H4 tetramer mimicking nucleosomal DNA and H2A-H2B histones, is required for heterochromatin inheritance, and promotes parental histone recycling during replication. We further identify binding sites for the FACT histone chaperone in Swi1/TIMELESS and DNA polymerase α that are required for heterochromatin inheritance. We propose that Mrc1, in concert with FACT acting as a mobile co-chaperone, coordinates the distribution of parental histones to newly replicated DNA.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    亲本组蛋白跨复制叉的遗传被认为介导表观遗传记忆。这里,我们发现裂变酵母Mrc1(人类中的CLASPIN)结合H3-H4四聚体,并作为对称亲本组蛋白遗传的中心协调者起作用。关键连接体结构域中的Mrc1突变体破坏了亲本组蛋白与滞后链的分离,与Mcm2组蛋白结合突变体相当。两种突变体均显示H3K9me介导的基因沉默的克隆和不对称丢失。AlphaFold预测了Mrc1和Mcm2对H3-H4四聚体的共同陪伴,Mrc1连接域桥接了组蛋白和Mcm2结合。生化和功能分析验证了该模型,并揭示了Mrc1功能的二重性:在连接子域中禁用组蛋白结合会破坏滞后链再循环,而另一个组蛋白结合突变会损害前导链再循环。我们建议Mrc1在滞后和领先的链再循环途径之间切换组蛋白,部分是通过复制体内部共同陪伴,确保表观遗传传递到两个子细胞。
    The inheritance of parental histones across the replication fork is thought to mediate epigenetic memory. Here, we reveal that fission yeast Mrc1 (CLASPIN in humans) binds H3-H4 tetramers and operates as a central coordinator of symmetric parental histone inheritance. Mrc1 mutants in a key connector domain disrupted segregation of parental histones to the lagging strand comparable to Mcm2 histone-binding mutants. Both mutants showed clonal and asymmetric loss of H3K9me-mediated gene silencing. AlphaFold predicted co-chaperoning of H3-H4 tetramers by Mrc1 and Mcm2, with the Mrc1 connector domain bridging histone and Mcm2 binding. Biochemical and functional analysis validated this model and revealed a duality in Mrc1 function: disabling histone binding in the connector domain disrupted lagging-strand recycling while another histone-binding mutation impaired leading strand recycling. We propose that Mrc1 toggles histones between the lagging and leading strand recycling pathways, in part by intra-replisome co-chaperoning, to ensure epigenetic transmission to both daughter cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    基于染色质的表观遗传记忆依赖于亲本组蛋白与新合成的子DNA链的对称分布,由DNA复制机制中的组蛋白伴侣帮助。然而,亲本组蛋白转移的机制仍然难以捉摸。这里,我们发现在裂变酵母中,复制体蛋白Mrc1在促进亲本组蛋白H3-H4向滞后链的转移中起着至关重要的作用,确保适当的异染色质遗传。此外,Mrc1促进Mcm2和DNA聚合酶α之间的相互作用,两种对亲本组蛋白转移至关重要的组蛋白结合蛋白。此外,Mrc1参与亲本组蛋白转移和表观遗传独立于其在DNA复制检查点激活和复制体速度控制中的已知功能。相反,Mrc1在其组蛋白结合区之外与Mcm2相互作用,为分离的亲本组蛋白转移途径创造物理障碍。这些发现揭示了Mrc1是复制体中的关键角色,协调亲本组蛋白分离以调节表观遗传。
    Chromatin-based epigenetic memory relies on the symmetric distribution of parental histones to newly synthesized daughter DNA strands, aided by histone chaperones within the DNA replication machinery. However, the mechanism of parental histone transfer remains elusive. Here, we reveal that in fission yeast, the replisome protein Mrc1 plays a crucial role in promoting the transfer of parental histone H3-H4 to the lagging strand, ensuring proper heterochromatin inheritance. In addition, Mrc1 facilitates the interaction between Mcm2 and DNA polymerase alpha, two histone-binding proteins critical for parental histone transfer. Furthermore, Mrc1\'s involvement in parental histone transfer and epigenetic inheritance is independent of its known functions in DNA replication checkpoint activation and replisome speed control. Instead, Mrc1 interacts with Mcm2 outside of its histone-binding region, creating a physical barrier to separate parental histone transfer pathways. These findings unveil Mrc1 as a key player within the replisome, coordinating parental histone segregation to regulate epigenetic inheritance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    表观遗传机制使细胞能够开发新的适应性表型而不改变其遗传蓝图。最近的研究表明组蛋白修饰,如异染色质定义H3K9甲基化(H3K9me),可以重新分配以建立适应性表型。我们开发了一种精确工程的遗传方法来触发裂变酵母中按需的异染色质失调。这使我们能够长期追踪基因组规模的RNA和H3K9me随时间的变化,持续的文化。自适应H3K9me相对于起始压力在非常慢的时间尺度上建立。我们捕获了依赖于RNA结合复合物MTREC的动态H3K9me再分布事件,最终导致细胞聚集在一个最佳的自适应解决方案上。消除应力后,细胞放松到新的转录和染色质状态,建立可调节的记忆,为未来的适应性表观遗传反应做好准备。总的来说,我们确定了表观遗传适应的缓慢动力学,允许细胞发现并遗传编码新的适应性解决方案,影响耐药性和对感染的反应。
    Epigenetic mechanisms enable cells to develop novel adaptive phenotypes without altering their genetic blueprint. Recent studies show histone modifications, such as heterochromatin-defining H3K9 methylation (H3K9me), can be redistributed to establish adaptive phenotypes. We developed a precision-engineered genetic approach to trigger heterochromatin misregulation on-demand in fission yeast. This enabled us to trace genome-scale RNA and H3K9me changes over time in long-term, continuous cultures. Adaptive H3K9me establishes over remarkably slow timescales relative to the initiating stress. We captured dynamic H3K9me redistribution events which depend on an RNA binding complex MTREC, ultimately leading to cells converging on an optimal adaptive solution. Upon stress removal, cells relax to new transcriptional and chromatin states, establishing memory that is tunable and primed for future adaptive epigenetic responses. Collectively, we identify the slow kinetics of epigenetic adaptation that allow cells to discover and heritably encode novel adaptive solutions, with implications for drug resistance and response to infection.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    抑制兼性异染色质对于许多生物体的发育过程至关重要。Polycomb抑制复合物2对组蛋白H3赖氨酸27(H3K27)的甲基化是真菌和高等真核生物兼性异染色质的显着特征。尽管这种甲基化通常与沉默有关,压制的详细机制仍未完全理解。我们利用正向遗传学方法来鉴定在粗糙神经孢菌中维持兼性异染色质基因沉默所需的基因,并鉴定了三个以前未表征的对沉默很重要的基因:sds3(NCU01599),rlp1(RPD3L蛋白1;NCU09007),和rlp2(RPD3L蛋白2;NCU02898)。我们发现SDS3,RLP1和RLP2与酿酒酵母Rpd3L复合物的N.crassa同源物相关,并且是抑制H3K27甲基化基因子集所必需的。这些基因的缺失不会导致H3K27甲基化的缺失,但会增加组蛋白H3赖氨酸14在上调基因的乙酰化,这表明RPD3L驱动的脱乙酰是N.crassa中兼性异染色质沉默所需的因素,也许在其他生物体中。
    Repression of facultative heterochromatin is essential for developmental processes in numerous organisms. Methylation of histone H3 lysine 27 (H3K27) by Polycomb repressive complex 2 is a prominent feature of facultative heterochromatin in both fungi and higher eukaryotes. Although this methylation is frequently associated with silencing, the detailed mechanism of repression remains incompletely understood. We utilized a forward genetics approach to identify genes required to maintain silencing at facultative heterochromatin genes in Neurospora crassa and identified three previously uncharacterized genes that are important for silencing: sds3 (NCU01599), rlp1 (RPD3L protein 1; NCU09007), and rlp2 (RPD3L protein 2; NCU02898). We found that SDS3, RLP1, and RLP2 associate with N. crassa homologs of the Saccharomyces cerevisiae Rpd3L complex and are required for repression of a subset of H3K27-methylated genes. Deletion of these genes does not lead to loss of H3K27 methylation but increases acetylation of histone H3 lysine 14 at up-regulated genes, suggesting that RPD3L-driven deacetylation is a factor required for silencing of facultative heterochromatin in N. crassa, and perhaps in other organisms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    早期胚胎通常具有相对非结构化的染色质,缺乏分化细胞典型的活性和非活性结构域。在许多物种中,这些调节结构域在合子基因组激活(ZGA)期间建立。在果蝇中,ZGA发生在13快之后,还原性,合胞体核分裂,在此期间核与细胞质(N/C)的比率呈指数增长。这些部门包括材料负载,组蛋白进入染色质的细胞质池。先前的工作发现,复制偶联组蛋白H3的染色质掺入减少,而其变体H3.3在细胞周期中增加,直至ZGA。在其他细胞类型中,H3.3与活跃转录位点以及异染色质相关,表明H3.3掺入和ZGA之间存在联系。这里,我们研究了在ZGA中导致H3.3掺入的因素。我们发现,在最终的ZGA前循环中,H3的核可用性比H3.3下降更快。我们还观察到在局部N/C比率不均匀的突变胚胎中H3.3掺入的N/C比率依赖性增加。我们发现伴侣结合,不是基因表达,在内源性H3.3A基因座使用H3/H3.3嵌合蛋白控制掺入模式。我们使用Hira(H3.3伴侣)突变胚胎测试了H3.3伴侣途径掺入H3.3的特异性。总的来说,我们提出了一个模型,其中局部N/C比和特异性伴侣结合调节ZGA期间H3.3的差异掺入。
    Early embryos often have relatively unstructured chromatin that lacks active and inactive domains typical of differentiated cells. In many species, these regulatory domains are established during zygotic genome activation (ZGA). In Drosophila, ZGA occurs after 13 fast, reductive, syncytial nuclear divisions during which the nuclear to cytoplasmic (N/C) ratio grows exponentially. These divisions incorporate maternally-loaded, cytoplasmic pools of histones into chromatin. Previous work found that chromatin incorporation of replication-coupled histone H3 decreases while its variant H3.3 increases in the cell cycles leading up to ZGA. In other cell types, H3.3 is associated with sites of active transcription as well as heterochromatin, suggesting a link between H3.3 incorporation and ZGA. Here, we examine the factors that contribute to H3.3 incorporation at ZGA. We identify a more rapid decrease in the nuclear availability of H3 than H3.3 over the final pre-ZGA cycles. We also observe an N/C ratio-dependent increase in H3.3 incorporation in mutant embryos with non-uniform local N/C ratios. We find that chaperone binding, not gene expression, controls incorporation patterns using H3/H3.3 chimeric proteins at the endogenous H3.3A locus. We test the specificity of the H3.3 chaperone pathways for H3.3 incorporation using Hira (H3.3 chaperone) mutant embryos. Overall, we propose a model in which local N/C ratios and specific chaperone binding regulate differential incorporation of H3.3 during ZGA.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    HP1蛋白对于建立和维持转录沉默异染色质至关重要。他们二聚化,形成一个结合界面来招募不同的染色质相关因子。尽管已知HP1蛋白快速进化,实现功能专业化所需的变异程度是未知的。为了研究氨基酸序列的变化如何影响异染色质的形成,我们对S.pombeHP1同源物进行了靶向诱变筛选,Swi6.与HP1二聚化界面相邻的辅助表面内的替换产生具有不同维持特性的Swi6变体。值得注意的是,单个氨基酸位置的替换导致表观遗传的持续获得或丧失。这些取代增加了Swi6染色质在体内的占有率,并改变了Swi6-蛋白质相互作用,从而重新编程了H3K9me的维持。我们展示了辅助表面中Swi6氨基酸组成的相对较小的变化如何导致表观遗传遗传的深刻变化,从而提供了进化HP1效应子特异性的冗余机制。
    HP1 proteins are essential for establishing and maintaining transcriptionally silent heterochromatin. They dimerize, forming a binding interface to recruit diverse chromatin-associated factors. Although HP1 proteins are known to rapidly evolve, the extent of variation required to achieve functional specialization is unknown. To investigate how changes in amino acid sequence impacts heterochromatin formation, we performed a targeted mutagenesis screen of the S. pombe HP1 homolog, Swi6. Substitutions within an auxiliary surface adjacent to the HP1 dimerization interface produce Swi6 variants with divergent maintenance properties. Remarkably, substitutions at a single amino acid position lead to the persistent gain or loss of epigenetic inheritance. These substitutions increase Swi6 chromatin occupancy in vivo and altered Swi6-protein interactions that reprogram H3K9me maintenance. We show how relatively minor changes in Swi6 amino acid composition in an auxiliary surface can lead to profound changes in epigenetic inheritance providing a redundant mechanism to evolve HP1-effector specificity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在真核生物中,重复的DNA可以从头变得沉默,转录或转录后,通过独立于强序列特异性线索的过程。这种过程的机械性质仍然知之甚少。我们发现在真菌中,转录和转录后沉默的从头启动与扰动的染色质有关,它是由tetO操纵子阵列上转录因子的异常活性实验产生的。转录沉默是由典型的组成性异染色质介导的。另一方面,转录后沉默类似于重复诱导的抑制,但在同源重组失活时正常发生。tetO阵列的所有沉默都取决于SAD-6,SWI/SNF染色质重塑剂ATRX(α地中海贫血/精神发育迟滞综合征X连锁)的真菌直系同源物,这是在扰动位点保持核小体占用所必需的。此外,我们发现,另外两种类型的序列(lacO阵列和天然富含AT的DNA)也可以经历与扰乱的染色质相关的重组非依赖性抑制。这些结果表明了一个模型,其中转录和转录后沉默的从头启动与扰动的染色质的重塑有关。
    In eukaryotes, repetitive DNA can become silenced de novo, either transcriptionally or post-transcriptionally, by processes independent of strong sequence-specific cues. The mechanistic nature of such processes remains poorly understood. We found that in the fungus Neurospora crassa, de novo initiation of both transcriptional and post-transcriptional silencing was linked to perturbed chromatin, which was produced experimentally by the aberrant activity of transcription factors at the tetO operator array. Transcriptional silencing was mediated by canonical constitutive heterochromatin. On the other hand, post-transcriptional silencing resembled repeat-induced quelling but occurred normally when homologous recombination was inactivated. All silencing of the tetO array was dependent on SAD-6, fungal ortholog of the SWI/SNF chromatin remodeler ATRX (Alpha Thalassemia/Mental Retardation Syndrome X-Linked), which was required to maintain nucleosome occupancy at the perturbed locus. In addition, we found that two other types of sequences (the lacO array and native AT-rich DNA) could also undergo recombination-independent quelling associated with perturbed chromatin. These results suggested a model in which the de novo initiation of transcriptional and post-transcriptional silencing is coupled to the remodeling of perturbed chromatin.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号