Heterochromatin

异染色质
  • 文章类型: Journal Article
    TriatomadelponteiRomaña和Abalos1947的基因组是异翅目中最大的,大约是其他评估的异翅目基因组的两到三倍。这里,确定了基因组的重复部分,并将其与姊妹物种TriatomainfestansKlug1834进行了比较,以阐明这些物种的核型和基因组进化。T.delpuntei重复组分析表明,其基因组中最丰富的成分是卫星DNA,占基因组一半以上。T.delpontei卫星包括160个卫星DNA家族,它们中的大多数也存在于T.infestans中。在这两个物种中,只有少数卫星DNA家族在基因组中的比例过高。这些族是C异色区域的构建块。形成异染色质的这些卫星DNA家族中的两个在两个物种中是相同的。然而,一个物种的异染色质中高度扩增的卫星DNA家族,而另一个物种的异染色质丰度低,位于常染色质中。因此,目前的结果描述了卫星DNA序列对Triatominae基因组进化的巨大影响。在这种情况下,satellitome的测定和分析导致了一个假设,该假设解释了satDNA序列如何在T.delpontei上生长,从而在真正的虫子中达到其巨大的基因组大小。
    The genome of Triatoma delpontei Romaña & Abalos 1947 is the largest within Heteroptera, approximately two to three times greater than other evaluated Heteroptera genomes. Here, the repetitive fraction of the genome was determined and compared with its sister species Triatoma infestans Klug 1834, in order to shed light on the karyotypic and genomic evolution of these species. The T. delpontei repeatome analysis showed that the most abundant component in its genome is satellite DNA, which makes up more than half of the genome. The T. delpontei satellitome includes 160 satellite DNA families, most of them also present in T. infestans. In both species, only a few satellite DNA families are overrepresented on the genome. These families are the building blocks of the C-heterochromatic regions. Two of these satellite DNA families that form the heterochromatin are the same in both species. However, there are satellite DNA families highly amplified in the heterochromatin of one species that in the other species are in low abundance and located in the euchromatin. Therefore, the present results depicted the great impact of the satellite DNA sequences in the evolution of Triatominae genomes. Within this scenario, satellitome determination and analysis led to a hypothesis that explains how satDNA sequences have grown on T. delpontei to reach its huge genome size within true bugs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    性染色体进化的标志是重组的逐渐抑制,导致非重组染色体的随后变性。在鸟类中,属于两个主要分支的物种,古鸟科(包括子龙和不会飞的动物)和新鸟科(所有剩余的鸟类),表现出独特的性染色体变性模式。鸟类是雌性异育动物,其中女性有一个Z和一个W染色体。在新下,高度退化的W染色体似乎遵循了预期的性染色体进化轨迹。相比之下,在古动物中,平直体鸟类的性染色体在很大程度上重组。维持中性染色体之间重组的根本原因尚不清楚。由于多种原因,W染色体的变性可能已经停止或减慢,从选择性过程。比如性拮抗选择的效果不太明显,中性过程,比如分子进化速率较慢。基因组组装和基因表达数据的产生使古动物成为可能,近年来,仔细观察他们的性染色体进化。这里,我们根据当前数据批判性地评估了对维持比例重组的理解。最后,我们强调了性染色体进化的某些方面,这些方面需要进一步研究,并且可能会增加推断该鸟类谱系中性染色体进化独特历史的能力。
    The hallmark of sex chromosome evolution is the progressive suppression of recombination which leads to subsequent degeneration of the non-recombining chromosome. In birds, species belonging to the two major clades, Palaeognathae (including tinamous and flightless ratites) and Neognathae (all remaining birds), show distinctive patterns of sex chromosome degeneration. Birds are female heterogametic, in which females have a Z and a W chromosome. In Neognathae, the highly-degenerated W chromosome seems to have followed the expected trajectory of sex chromosome evolution. In contrast, among Palaeognathae, sex chromosomes of ratite birds are largely recombining. The underlying reason for maintenance of recombination between sex chromosomes in ratites is not clear. Degeneration of the W chromosome might have halted or slowed down due to a multitude of reasons ranging from selective processes, such as a less pronounced effect of sexually antagonistic selection, to neutral processes, such as a slower rate of molecular evolution in ratites. The production of genome assemblies and gene expression data for species of Palaeognathae has made it possible, during recent years, to have a closer look at their sex chromosome evolution. Here, we critically evaluate the understanding of the maintenance of recombination in ratites in light of the current data. We conclude by highlighting certain aspects of sex chromosome evolution in ratites that require further research and can potentially increase power for the inference of the unique history of sex chromosome evolution in this lineage of birds.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Hophophthys属的bighe鱼(H.melitrix和H.nobilis)是重要的水产养殖物种。他们接受了广泛的多学科研究,但是细胞遗传学仅限于常规方案。这里,我们采用Giemsa-/C-/CMA3-染色和多基因家族和端粒重复的染色体定位。两个物种共享(i)二倍体染色体编号2n=48和核型结构,(ii)低含量的组成型异染色质,(iii)不存在间质性端粒位点(ITS),(iv)与一个主要rDNA簇相邻的一对5SrDNA基因座,和(v)一对共定位的U1/U2的snDNA串联重复。这两个物种,另一方面,差异在于(i)在最大的顶心对11上存在/不存在组成性异染色质的明显间隙阻滞,以及(ii)主要(CMA3阳性)rDNA位点的数量。此外,我们在这里申请,第一次,H.harmandi的传统细胞遗传学,一种被认为在野外灭绝和/或与H.melitrix广泛杂交的物种。它的2n和核型描述与前两个物种中发现的相匹配,而银染显示主要rDNA的分布差异。因此,the鱼代表了另一种与总体核型分化无关的分类学多样性,其中2n和核型结构不能帮助区分密切相关物种的基因组。另一方面,我们证明了两个细胞遗传学特征(组成型异染色质和主要rDNA的分布)可能对纯物种的诊断有用。这些标记的普适性必须通过分析其他big鱼的纯种群来进一步验证。
    The bighead carps of the genus Hypophthalmichthys (H. molitrix and H. nobilis) are important aquaculture species. They were subjected to extensive multidisciplinary research, but with cytogenetics confined to conventional protocols only. Here, we employed Giemsa-/C-/CMA3- stainings and chromosomal mapping of multigene families and telomeric repeats. Both species shared (i) a diploid chromosome number 2n = 48 and the karyotype structure, (ii) low amount of constitutive heterochromatin, (iii) the absence of interstitial telomeric sites (ITSs), (iv) a single pair of 5S rDNA loci adjacent to one major rDNA cluster, and (v) a single pair of co-localized U1/U2 snDNA tandem repeats. Both species, on the other hand, differed in (i) the presence/absence of remarkable interstitial block of constitutive heterochromatin on the largest acrocentric pair 11 and (ii) the number of major (CMA3-positive) rDNA sites. Additionally, we applied here, for the first time, the conventional cytogenetics in H. harmandi, a species considered extinct in the wild and/or extensively cross-hybridized with H. molitrix. Its 2n and karyotype description match those found in the previous two species, while silver staining showed differences in distribution of major rDNA. The bighead carps thus represent another case of taxonomic diversity not associated with gross karyotype differentiation, where 2n and karyotype structure cannot help in distinguishing between genomes of closely related species. On the other hand, we demonstrated that two cytogenetic characters (distribution of constitutive heterochromatin and major rDNA) may be useful for diagnosis of pure species. The universality of these markers must be further verified by analyzing other pure populations of bighead carps.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Wertheimerinae is a small subfamily of thorny catfish composed of two species found in eastern Brazilian coastal drainages: Wertheimeria maculata and Kalyptodoras bahiensis. According to molecular phylogenetic analysis, Franciscodoras marmoratus an endemic species of the São Francisco River is also a member of this subfamily. Even though both phylogenetic approaches suggest that this group is one of the oldest lineages of the Doradidae, a disagreement remains about the constitution of Wertheimerinae. Hence, cytogenetic analysis is important to understand the karyotypic evolution of thorny catfish and can be a useful cytotaxonomic tool to clarify the relationships between these species. All Wertheimerinae species, and F. marmoratus here analyzed, shared 2n = 58 chromosomes, karyotypic formulas (24m+12sm +8st +14a), and nucleolus organizer region (NOR) pattern (terminal 18S rDNA sites on pair 22). Differences were noted in heterochromatin and 5S rDNA site distribution. The chromosomal markers here applied added to the molecular data, reinforcing that these three species actually represent a well-resolved taxonomic unit. Our results represent one more evidence of the ancient connectivity between eastern coastal drainages and São Francisco River, whose separation represented an important event for the allopatric speciation that produced the current forms of Wertheimerinae subfamily.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    In this study we showed that constitutive heterochromatin, GC-rich DNA and rDNA are implicated in chromosomal rearrangements during the basic chromosome number changing (dysploidy) in Reichardia genus. This small Mediterranean genus comprises 8-10 species and presents three basic chromosome numbers (x = 9, 8 and 7). To assess genome evolution and differentiation processes, studies were conducted in a dysploid series of six species: R. dichotoma, R. macrophylla and R. albanica (2n = 18), R. tingitana and R. gaditana (2n = 16), and R. picroides (2n = 14). The molecular phylogeny reconstruction comprised three additional species (R. crystallina and R. ligulata, 2n = 16 and R. intermedia, 2n = 14). Our results indicate that the way of dysploidy is descending. During this process, a positive correlation was observed between chromosome number and genome size, rDNA loci number and pollen size, although only the correlation between chromosome number and genome size is still recovered significant once considering the phylogenetic effect. Fluorescent in situ hybridisation also evidenced changes in number, position and organisation of two rDNA families (35S and 5S), including the reduction of loci number and, consequently, reduction in the number of secondary constrictions and nuclear organising regions from three to one per diploid genome. The potential mechanisms of chromosomal and genome evolution, strongly implicating heterochromatin, are proposed and discussed, with particular consideration for Reichardia genus.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Gymnotus coatesi is a small and rare species of banded knife fish that was originally described by LaMonte in 1935, found along the main stretch of the Amazon River. There is no described cytogenetic data on this species. We analyzed the karyotype of five specimens of G. coatesi collected from Cururutuia Stream in Bragança, Pará, Brazil. The obtained diploid number is 50 and the karyotypic formula is 24 m/sm +26 st/a. The constitutive heterochromatin is DAPI positive and distributed mainly in the centromeric and pericentromeric regions of the chromosomes. Ag-nucleolus organizer regions staining showed nine active sites. The 5S rDNA probe hybridized chromosome pair 17 in the interstitial part of the long arm. Fluorescence in situ hybridization (FISH) with telomeric probes revealed signals only at terminal regions of the chromosomes. The 18S rDNA probe hybridized to 21 sites, and these signals colocalized with the telomeric sequences. This relatively high number of 18S rDNA sites may reflect gene duplication mediated by transposable elements. These results indicate that although the diploid number of G. coatesi is within the range previously observed for other members of the genus, various karyotypic characteristics distinguish G. coatesi from the other species of the genus and members of the Gymnotiform order.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Case Reports
    This study searched a rare and aggressive type of cancer in dogs and humans, the breast carcinosarcoma. Both clinical and pathological traits of mammary carcinosarcomas in dogs are similar to humans, such as infrequent occurrence, fast tumor growth, and unfavorable prognosis when compared to carcinomas. Other possible alterations include chromosomal abnormalities that can be useful for the identification of tumoral cells and diagnosis. The aim of this study was to compare the chromosomal features of peripheral lymphocytes and tumor cells in a mammary carcinosarcoma of a 14-year-old female Poodle. Chromosomes were analyzed from 210 metaphases by conventional Giemsa staining, C-banding, and base-specific fluorochrome staining with chromomycin A3 (CMA3+) and DAPI. Of the 105 blood cells, 56.3% followed the standard karyotype of dogs (2n = 78). In contrast, the carcinosarcoma cells showed high chromosomal numbers (104 to 153), divided into 80% hypertriploid (118 to 136 chromosomes), 10.5% hypotetraploid (137 to 153 chromosomes), 5.7% hypotriploid (104 to 116 chromosomes), and 3.8% triploid cells (117 chromosomes). Among the aneuploid cells identified, we highlighted the trisomy of pair 1 and X chromosome once these elements were easily recognized in karyotype because of their size (pair 1) or differential morphology. Heterochromatin in normal cells was restricted to the pericentromeric region of all chromosomes while few C-bands were observed in tumor cells. This apparent loss of heterochromatin in neoplastic cells was supposed to favor centric fusion among formerly acrocentric chromosomes. Fluorochrome staining reinforced this hypothesis once GC-rich segments (CMA3+) were identified on 10 chromosomes from normal cells (2n = 78) whereas carcinosarcoma metaphases had up to 11 chromosomes bearing CMA3 signals in spite of their remarkable high chromosomal numbers. We concluded that, like in humans, the carcinosarcoma in dogs caused genome instability that eventually led to structural and numerical chromosomal aberrations. Besides, this study reinforced the importance of cytogenetic studies in dogs as a reference material for human cancer studies, especially in rare cases, since it is possible to increase knowledge about the characteristics of breast neoplasms in which there is a little availability of similar cases for comparative studies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Corydoras Lacepède, 1803 is the most specious genus of Corydoradinae subfamily and many of its species are still unknown in relation to molecular cytogenetic markers. However, the diploid number and karyotypic formula were recorded for many species of this group. In current study, we provided the first cytogenetic information of Corydoras carlae Nijssen & Isbrücker, 1983, an endemic fish species from Iguassu River basin, Paraná State, Brazil. The individuals were collected in Florido River, a tributary of Iguassu River and analysed with respect to diploid number, heterochromatin distribution pattern, Ag-NORs and mapping of 5S and 18S ribosomal genes. The karyotype of this species comprises 46 chromosomes arranged in 22m+22sm+2st. The heterochromatin is distributed in centromeric and pericentromeric positions in most of the chromosomes, and also associated with NORs. The Ag-NORs were detected in the terminal position on the long arm of the metacentric pair 6. The double-FISH technique showed that 5S rDNA and 18S rDNA were co-localized in the terminal portion on the long arm of the metacentric pair 6. This condition of co-localization of ribosomal genes in Corydoras carlae seems to represent a marker for this species.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Constitutive heterochromatin, an essential structure that has been conserved throughout evolution, is required to maintain genome stability. Although heterochromatin is enriched for repressive traits, it can be actively transcribed to generate thousands of noncoding RNAs that are required for correct chromatin assembly. Despite the importance of this structure, how and why heterochromatin transcription is regulated, and the proteins responsible for this regulation, remain poorly understood. Here, we summarize recent findings in heterochromatin transcription regulation during different cellular processes with a focus on the epithelial-mesenchymal transition (EMT), which elicits important changes in cell behavior, has a key role in early development, and is involved in cancer progression.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    线粒体蛋白Frataxin(FXN)表达降低是Friedreich共济失调的根本原因。我们提出了一个由致病性扩展的GAA重复序列诱导的FXN转录提前终止的模型,该重复序列连接了R-loop结构,反义转录,和异染色质形成是弗里德赖希共济失调转录抑制的一种新机制。
    Reduced expression of the mitochondrial protein Frataxin (FXN) is the underlying cause of Friedreich\'s ataxia. We propose a model of premature termination of FXN transcription induced by pathogenic expanded GAA repeats that links R-loop structures, antisense transcription, and heterochromatin formation as a novel mechanism of transcriptional repression in Friedreich\'s ataxia.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号