Deep mutational scanning

深度突变扫描
  • 文章类型: Journal Article
    Baloxavir酸(BXA)是一种泛流感抗病毒剂,其靶向病毒mRNA合成所需的聚合酶酸性(PA)蛋白的帽依赖性内切核酸酶。为了全面了解与BXA易感性降低相关的分子变化及其适应度,我们对A(H1N1)pdm09病毒的PA核酸内切酶结构域进行了深度突变扫描.在增加浓度的BXA下体外连续传代重组病毒库,随后进行下一代测序以监测检测频率增加的PA氨基酸取代。将富集的PA氨基酸变化各自引入到重组A(H1N1)pdm09病毒中,以验证它们在体外对BXA易感性和病毒复制适应性的影响。已知赋予对BXA敏感性降低的I38T/M取代总是在5个连续传代内从重组病毒库中检测到。此外,我们发现了一个新的L106R取代,它出现在第3代,并使BXA的易感性降低了10倍以上.PA-L106在季节性甲型和乙型流感病毒中高度保守。与野生型病毒相比,L106R取代导致聚合酶活性降低和峰值病毒载量的轻微降低,这表明氨基酸的变化可能会导致适度的健身损失。我们的结果支持使用深度突变扫描作为阐明基因型-表型关系的实用工具。包括定位氨基酸取代降低对抗病毒药物的敏感性。
    Baloxavir acid (BXA) is a pan-influenza antiviral that targets the cap-dependent endonuclease of the polymerase acidic (PA) protein required for viral mRNA synthesis. To gain a comprehensive understanding on the molecular changes associated with reduced susceptibility to BXA and their fitness profile, we performed a deep mutational scanning at the PA endonuclease domain of an A (H1N1)pdm09 virus. The recombinant virus libraries were serially passaged in vitro under increasing concentrations of BXA followed by next-generation sequencing to monitor PA amino acid substitutions with increased detection frequencies. Enriched PA amino acid changes were each introduced into a recombinant A (H1N1)pdm09 virus to validate their effect on BXA susceptibility and viral replication fitness in vitro. The I38 T/M substitutions known to confer reduced susceptibility to BXA were invariably detected from recombinant virus libraries within 5 serial passages. In addition, we identified a novel L106R substitution that emerged in the third passage and conferred greater than 10-fold reduced susceptibility to BXA. PA-L106 is highly conserved among seasonal influenza A and B viruses. Compared to the wild-type virus, the L106R substitution resulted in reduced polymerase activity and a minor reduction of the peak viral load, suggesting the amino acid change may result in moderate fitness loss. Our results support the use of deep mutational scanning as a practical tool to elucidate genotype-phenotype relationships, including mapping amino acid substitutions with reduced susceptibility to antivirals.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    解释致病遗传变异仍然是人类遗传学和罕见疾病领域的挑战。进行深度突变扫描以绘制变体效应的当前成本和复杂性阻碍了所有疾病相关基因中变体的全基因组分辨率的众包方法。我们的框架,饱和诱变增强功能测定(SMuRF),通过模块化DMS组件来解决这些问题,提供简单且具有成本效益的饱和诱变,以及简化功能测定以增强对未解决变体的解释。将SMuRF应用于神经肌肉疾病基因FKRP和LARGE1,我们已经为超过99.8%的所有可能的编码单核苷酸变体(SNV)产生了功能评分,为营养不良症的临床变异解释提供了额外的证据。从SMuRF生成的数据可实现严重性预测,解析易受错义破坏的关键蛋白质结构区域,并为开发计算预测因子提供训练数据集。总之,我们的方法提供了一个框架,可以通过跨标准研究实验室进行众包实施的方式,实现对疾病基因的变异-功能洞察.
    Interpretation of disease-causing genetic variants remains a challenge in human genetics. Current costs and complexity of deep mutational scanning methods hamper crowd-sourcing approaches toward genome-wide resolution of variants in disease-related genes. Our framework, Saturation Mutagenesis-Reinforced Functional assays (SMuRF), addresses these issues by offering simple and cost-effective saturation mutagenesis, as well as streamlining functional assays to enhance the interpretation of unresolved variants. Applying SMuRF to neuromuscular disease genes FKRP and LARGE1, we generated functional scores for all possible coding single nucleotide variants, which aid in resolving clinically reported variants of uncertain significance. SMuRF also demonstrates utility in predicting disease severity, resolving critical structural regions, and providing training datasets for the development of computational predictors. Our approach opens new directions for enabling variant-to-function insights for disease genes in a manner that is broadly useful for crowd-sourcing implementation across standard research laboratories.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Review
    作为细胞结构和功能的核心参与者,蛋白质长期以来一直是生命科学研究的中心主题。分析蛋白质序列变异对其结构和功能的影响是研究蛋白质的重要手段之一。近年来,一种称为深度突变扫描(DMS)的技术已广泛应用于蛋白质研究领域。它通过高丰度DNA文库在蛋白质的特定区域平行引入数千个突变。筛选后,高通量测序用于对每个突变进行评分,揭示序列-函数相关性。由于其高通量,快速和容易,和省力的特点,DMS已成为蛋白质功能研究和蛋白质工程的重要方法。本文简要概述了DMS技术的原理,强调其在哺乳动物细胞中的应用。此外,这篇综述分析了当前的技术瓶颈,旨在促进相关研究。
    As central players in cellular structure and function, proteins have long been central themes in life science research. Analyzing the impact of protein sequence variation on its structure and function is one of the important means to study proteins. In recent years, a technology called deep mutational scanning (DMS) has been widely used in the field of protein research. It introduces thousands of mutations in parallel in specific regions of proteins through high-abundance DNA libraries. After screening, high-throughput sequencing is employed to score each mutation, revealing sequence-function correlations. Due to its high-throughput, fast and easy, and labor-saving features, DMS has become an important method for protein function research and protein engineering. This review briefly summarizes the principle of DMS technology, highlighting its applications in mammalian cells. Moreover, this review analyzes the current technical bottlenecks, aiming to facilitate relevant research.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    神经氨酸酶(NA)是关键的表面酶,是对抗甲型流感病毒的关键治疗靶标。它的进化可能导致潜在的人畜共患传播,季节性流行病,以及耐药突变体的出现。为了全面了解NA的突变效应和耐药性,我们采用高通量分析系统在小鼠肺组织中量化NA突变体在单核苷酸水平的复制能力.NA突变体的适合度通常与天然突变发生相关,并且受到维持蛋白质稳定性和NA功能的要求的限制。利用这个系统,我们分析了三种最常用的神经氨酸酶抑制剂(NAIs)的耐药性:扎那米韦,奥司他韦,还有帕拉米韦.除了确定以前报道的耐药突变,我们验证了新的突变体。值得注意的是,我们确定了一种变构突变,赋予了对所有三种药物的抗性,这可能通过干扰NA的四聚作用来影响药物结合。此外,与耐药突变相关的健身成本可能会限制其广泛传播.总之,我们在体内环境中提供了NA的适应性和耐药性景观的平行表征,这可以指导抗病毒药物的合理选择,以实现最佳的治疗效果和第二代NAI的开发。重要性NA是甲型流感病毒的重要表面抗原和药物靶标。全面了解体内NA的突变效应和耐药谱对于理解进化限制和做出有关药物选择的明智选择以在临床环境中对抗耐药性至关重要。在目前的研究中,我们在小鼠肺组织中建立了有效的深度突变筛查系统,并系统评估了NA单核苷酸突变的三种神经氨酸酶抑制剂的适应性效应和耐药性.NA突变体的适应度通常与数据库中的自然突变相关。NA突变体的适应度受生物物理因素的影响,如蛋白质稳定性,复杂的形成,和病毒感染引发的免疫反应。除了确认以前报道的耐药突变,鉴定了新的突变。有趣的是,我们发现了一种变构耐药突变,该突变不位于药物结合口袋内,但可能通过干扰NA四聚化而影响药物结合.这项研究中进行的双重评估提供了更准确的评估耐药突变的进化潜力,并为合理选择抗病毒药物提供指导。
    OBJECTIVE: NA is a crucial surface antigen and drug target of influenza A virus. A comprehensive understanding of NA\'s mutational effect and drug resistance profiles in vivo is essential for comprehending the evolutionary constraints and making informed choices regarding drug selection to combat resistance in clinical settings. In the current study, we established an efficient deep mutational screening system in mouse lung tissues and systematically evaluated the fitness effect and drug resistance to three neuraminidase inhibitors of NA single-nucleotide mutations. The fitness of NA mutants is generally correlated with a natural mutation in the database. The fitness of NA mutants is influenced by biophysical factors such as protein stability, complex formation, and the immune response triggered by viral infection. In addition to confirming previously reported drug-resistant mutations, novel mutations were identified. Interestingly, we identified an allosteric drug-resistance mutation that is not located within the drug-binding pocket but potentially affects drug binding by interfering with NA tetramerization. The dual assessments performed in this study provide a more accurate assessment of the evolutionary potential of drug-resistant mutations and offer guidance for the rational selection of antiviral drugs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    SARS-CoV-2从几种哺乳动物(主要是水貂和白尾鹿)向人类的重新传播引起了人们对新的动物衍生SARS-CoV-2变体的出现的担忧,从而加剧了大流行。这里,我们讨论了容易受到SARS-CoV-2自然或实验性感染的动物物种,并且可以将病毒传播给配偶或人类。我们描述了评估病毒刺突(S)蛋白突变对其受体和抗体结合的影响的尖端技术。我们对动物衍生病毒的刺突序列的审查确定了受体结合域(RBD)中的9个独特的氨基酸交换,这些氨基酸交换不存在于任何关注的变体(VOC)中。这些突变存在于伴侣动物如狗和猫中发现的SARS-CoV-2中,它们在水貂和白尾鹿中发现的SARS-CoV-2中表现出更高的频率,表明持续的传播可能有助于维持新的突变。其中四个交流,如Leu452Met,可能破坏人的获得性免疫保护,同时保持对人血管紧张素转换酶2(ACE2)受体的高亲和力。最后,我们讨论了未来研究具有公共卫生风险的动物源病毒的重要途径。
    The retransmissions of SARS-CoV-2 from several mammals - primarily mink and white-tailed deer - to humans have raised concerns for the emergence of a new animal-derived SARS-CoV-2 variant to worsen the pandemic. Here, we discuss animal species that are susceptible to natural or experimental infection with SARS-CoV-2 and can transmit the virus to mates or humans. We describe cutting-edge techniques to assess the impact of a mutation in the viral spike (S) protein on its receptor and on antibody binding. Our review of spike sequences of animal-derived viruses identified nine unique amino acid exchanges in the receptor-binding domain (RBD) that are not present in any variant of concern (VOC). These mutations are present in SARS-CoV-2 found in companion animals such as dogs and cats, and they exhibit a higher frequency in SARS-CoV-2 found in mink and white-tailed deer, suggesting that sustained transmissions may contribute to maintaining novel mutations. Four of these exchanges, such as Leu452Met, could undermine acquired immune protection in humans while maintaining high affinity for the human angiotensin-converting enzyme 2 (ACE2) receptor. Finally, we discuss important avenues of future research into animal-derived viruses with public health risks.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    GJB2基因是全球听力损失(HL)最常见的基因。错义变体是最丰富的类型。GJB2致病性错义变异导致非综合征型HL(常染色体隐性和显性)和综合征型HL合并皮肤病。然而,这些不同的错义变异导致不同表型的机制尚不清楚.超过2/3的GJB2错义变体尚未进行功能研究,目前被归类为不确定意义的变体(VUS)。基于这些功能确定的错义变体,我们回顾了临床表型,并研究了影响半通道和间隙连接功能的分子机制,包括连接蛋白生物合成,贩运,寡聚化为连接子,渗透性,以及其他共表达的连接蛋白之间的相互作用。我们预测,未来将通过深度突变扫描技术和优化计算模型来描述所有可能的GJB2错义变体。因此,不同错义变异导致不同表型的机制将得到充分阐明。
    The GJB2 gene is the most common gene responsible for hearing loss (HL) worldwide, and missense variants are the most abundant type. GJB2 pathogenic missense variants cause nonsyndromic HL (autosomal recessive and dominant) and syndromic HL combined with skin diseases. However, the mechanism by which these different missense variants cause the different phenotypes is unknown. Over 2/3 of the GJB2 missense variants have yet to be functionally studied and are currently classified as variants of uncertain significance (VUS). Based on these functionally determined missense variants, we reviewed the clinical phenotypes and investigated the molecular mechanisms that affected hemichannel and gap junction functions, including connexin biosynthesis, trafficking, oligomerization into connexons, permeability, and interactions between other coexpressed connexins. We predict that all possible GJB2 missense variants will be described in the future by deep mutational scanning technology and optimizing computational models. Therefore, the mechanisms by which different missense variants cause different phenotypes will be fully elucidated.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    不依赖氧气,基于黄素单核苷酸的荧光蛋白(FbFP)是厌氧环境中绿色荧光蛋白的有希望的替代品。深度突变扫描可对蛋白质序列-功能关系进行系统分析,但尚未应用于FbFP。专注于来自莱茵衣藻的CreiLOV,我们创建并分析了两个综合突变集合:(1)单残基,覆盖所有118个残基的位点饱和诱变文库;和(2)在15个残基的20个突变中的完整组合诱变文库,其中突变和残基选择基于单定点诱变结果。值得注意的是,第二类图书馆对于研究高阶上位性是必不可少的,但在文献中代表性不足。使用优化的FACS-seq测定,2,360个可能的单位点突变体中的2,185个(>92.5%)和184,320个可能的组合突变体中的165,428个(>89.7%)被可靠地分配了适应度值。我们构建了统计和机器学习模型来分析CreiLOV数据集,使用低阶诱变数据实现高阶突变体的准确适应度预测。此外,我们成功地分离了具有改进的荧光量子产率和热稳定性的CreiLOV变体。这项工作为工程组合蛋白质变体提供了新的经验数据和设计规则。
    Oxygen-independent, flavin mononucleotide-based fluorescent proteins (FbFPs) are promising alternatives to green fluorescent protein in anaerobic contexts. Deep mutational scanning performs systematic profiling of protein sequence-function relationships but has not been applied to FbFPs. Focusing on CreiLOV from Chlamydomonas reinhardtii, we created and analyzed two comprehensive mutant collections: (1) single-residue, site-saturation mutagenesis libraries covering all 118 residues; and (2) a full combinatorial metagenesis library among 20 mutations at 15 residues, where mutation and residue selection was based on single-site mutagenesis results. Notably, the second type of library is indispensable to study higher-order epistasis but underrepresented in the literature. Using optimized FACS-seq assays, 2,185 (>92.5%) out of 2,360 possible single-site mutants and 165,428 (>89.7%) out of 184,320 possible combinatorial mutants were reliably assigned with fitness values. We constructed statistical and machine-learning models to analyze the CreiLOV data set, enabling accurate fitness prediction of higher-order mutants using lower-order mutagenesis data. In addition, we successfully isolated CreiLOV variants with improved fluorescence quantum yield and thermostability. This work provides new empirical data and design rules to engineer combinatorial protein variants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    SARS-CoV-2的尖峰(S)蛋白正在快速进化,在病毒免疫逃逸中起着至关重要的作用,传染性,和可传播性。为了获得临床洞察力,Dadonaite等人。开发了一种新型的深度突变扫描(DMS)平台,用于绘制S蛋白突变对免疫逃避和病毒感染性的影响。
    The spike (S) protein of SARS-CoV-2, which is undergoing rapid evolution, plays crucial roles in viral immune escape, infectivity, and transmissibility. To gain clinical insight, Dadonaite et al. developed a novel deep mutational scanning (DMS) platform for mapping the effects of S protein mutations on immune evasion and viral infectivity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    揭示遗传变异如何导致表型变异是进化生物学中的关键问题之一,遗传学,和生物医学研究。深度突变扫描(DMS)技术已允许将成千上万的遗传变异有效且经济地映射到表型变异。自从大约十年前首次系统地介绍以来,我们目睹了深度突变扫描在许多研究领域的使用,导致了科学突破。此外,由于寡核苷酸合成技术,深度突变扫描的每个步骤中的方法都变得更加通用,高通量表型鉴定方法和深度测序技术。然而,深度突变扫描的每个特定可能步骤都有其优点和缺点,一些限制仍在等待进一步的技术发展。这里,我们讨论了通过深度突变扫描取得的最新科学成就,并描述了在深度突变扫描的每个步骤中广泛使用的方法。我们还比较了这些不同的方法,并分析了它们的优缺点,提供洞察如何设计一个最适合读者\'项目目标的深度突变扫描研究。
    Unveiling how genetic variations lead to phenotypic variations is one of the key questions in evolutionary biology, genetics, and biomedical research. Deep mutational scanning (DMS) technology has allowed the mapping of tens of thousands of genetic variations to phenotypic variations efficiently and economically. Since its first systematic introduction about a decade ago, we have witnessed the use of deep mutational scanning in many research areas leading to scientific breakthroughs. Also, the methods in each step of deep mutational scanning have become much more versatile thanks to the oligo-synthesizing technology, high-throughput phenotyping methods and deep sequencing technology. However, each specific possible step of deep mutational scanning has its pros and cons, and some limitations still await further technological development. Here, we discuss recent scientific accomplishments achieved through the deep mutational scanning and describe widely used methods in each step of deep mutational scanning. We also compare these different methods and analyze their advantages and disadvantages, providing insight into how to design a deep mutational scanning study that best suits the aims of the readers\' projects.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    流感神经氨酸酶(NA)作为一种有效的疫苗靶标受到越来越多的关注。然而,其突变耐受性没有得到很好的表征。这里,使用深度突变扫描探测人类H3N2NA中>6,000个突变的适应性效应。我们的结果表明,尽管其抗原区域具有较高的突变耐受性,有低突变耐受性的溶剂暴露区域。我们还发现蛋白质稳定性是NA突变适合度的主要决定因素。深度突变扫描结果与使用蛋白质语言模型从自然序列推断的突变适合度很好地相关。证实了我们的发现与循环菌株的自然进化的相关性。另外的分析进一步表明,尽管已经进化了>50年,人类H3N2NA还远未耗尽突变。总的来说,这项研究提高了我们对NA的进化潜力和潜在的生物物理约束的理解,这反过来提供了对基于NA的疫苗设计的见解。
    Influenza neuraminidase (NA) has received increasing attention as an effective vaccine target. However, its mutational tolerance is not well characterized. Here, the fitness effects of >6,000 mutations in human H3N2 NA are probed using deep mutational scanning. Our result shows that while its antigenic regions have high mutational tolerance, there are solvent-exposed regions with low mutational tolerance. We also find that protein stability is a major determinant of NA mutational fitness. The deep mutational scanning result correlates well with mutational fitness inferred from natural sequences using a protein language model, substantiating the relevance of our findings to the natural evolution of circulating strains. Additional analysis further suggests that human H3N2 NA is far from running out of mutations despite already evolving for >50 years. Overall, this study advances our understanding of the evolutionary potential of NA and the underlying biophysical constraints, which in turn provide insights into NA-based vaccine design.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号