Bacillus spore

芽孢杆菌孢子
  • 文章类型: Journal Article
    DNA数据存储技术可以取代传统的芯片或磁性数据存储介质,提供长期稳定性,高密度,可持续存储。由于其纠错能力,存储在活生物体中的DNA数据在信息复制中表现出高保真度。在这里,我们报告了与可诱导的人工组装细菌染色体集成的芽孢杆菌底盘的开发,以促进随机数据访问。我们使用调控启动子可访问的基本编码系统以DNA序列的形式生成了三组数据。带有这些基因的孢子芽孢杆菌用于长期储存,其中孢子的活力测定经受恶劣的环境压力以评估数据存储稳定性。高温和氧化应激处理后,数据精度保持在99%以上,而紫外线照射处理提供了96%以上的准确度。开发的芽孢杆菌底盘和人工染色体通过使用其他DNA数字编码和解码程序来促进较大数据量的长期存储。
    DNA data storage technology may supersede conventional chip or magnetic data storage medium, providing long-term stability, high density, and sustainable storage. Due to its error-correcting capability, DNA data stored in living organisms exhibits high fidelity in information replication. Here we report the development of a Bacillus chassis integrated with an inducible artificially assembled bacterial chromosome to facilitate random data access. We generated three sets of data in the form of DNA sequences using a rudimentary coding system accessible by the regulatory promoter. Sporulated Bacillus harboring the genes were used for long-term storage, where viability assays of spores were subjected to harsh environmental stresses to evaluate the data storage stability. The data accuracy remained above 99% after high temperature and oxidative stress treatment, whereas UV irradiation treatment provided above 96% accuracy. The developed Bacillus chassis and artificial chromosome facilitate the long-term storage of larger datum volume by using other DNA digital encoding and decoding programs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在本文中,我们报道了一种高通量的生物方法来制备基于孢子的单分散微粒(SMMs),然后通过利用芽孢杆菌孢子的内源性官能团形成载有CdTe量子点(QD)的SMMs的纳米复合材料。使用透射电子显微镜对SMM和QD掺入的孢子微球(QDSM)进行了表征,高分辨率透射电子显微镜,荧光显微镜,荧光和紫外可见吸收光谱,zeta电位分析,傅里叶变换红外光谱,电位滴定,X射线光电子能谱。还通过等温滴定微量热法(ITC)研究了QD/SMM相互作用和抗原/QDSM相互作用的热力学。获得了以单一发光颜色或具有受控发射强度比的多种颜色编码的荧光QDSM。以绿色QDSMs为模型系统,通过流式细胞术检测猪血清中的猪细小病毒抗体,结果证明了QDSM在高通量免疫分析中的巨大潜力。由于简单等优点,低成本,高通量和生态友好,我们开发的平台可以在疾病检测中找到广泛的应用,食品安全评价和环境评价。
    In this paper, we report a high-throughput biological method to prepare spore-based monodisperse microparticles (SMMs) and then form the nanocomposites of CdTe quantum dot (QD)-loaded SMMs by utilizing the endogenous functional groups from Bacillus spores. The SMMs and QD-incorporated spore microspheres (QDSMs) were characterized by using transmission electron microscopy, high-resolution transmission electron microscopy, fluorescence microscopy, fluorescence and UV-visible absorption spectroscopy, zeta potential analysis, Fourier-transform infrared spectroscopy, potentiometric titrations, X-ray photo-electron spectroscopy. The thermodynamics of QD/SMM interaction and antigen/QDSM interaction was also investigated by isothermal titration microcalorimetry (ITC). Fluorescent QDSMs coded either with a single luminescence color or with multiple colors of controlled emission intensity ratios were obtained. Green QDSMs were used as a model system to detect porcine parvovirus antibody in swine sera via flow cytometry, and the results demonstrated a great potential of QDSMs in high-throughput immunoassays. Due to the advantages such as simplicity, low cost, high throughput and eco-friendliness, our developed platform may find wide applications in disease detection, food safety evaluation and environmental assessment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号