Arylsulfotransferase

芳基磺基转移酶
  • 文章类型: Journal Article
    在磺基转移酶(SULT)超家族中,SULT1家族的成员主要催化酚类化合物的磺化反应,参与II期代谢解毒过程,在内分泌稳态中起关键作用。据报道,SULT1A2基因中的编码变体rs1059491与儿童肥胖有关。本研究旨在探讨rs1059491与成人肥胖和心脏代谢异常风险的关系。这项病例对照研究包括226名正常体重,在台州进行健康体检的168名超重成年人和72名肥胖成年人,中国。通过在SULT1A2编码区的外显子7中的Sanger测序进行rs1059491的基因分型。卡方检验,单向方差分析,并应用逻辑回归模型。超重合并肥胖组和对照组rs1059491的次要等位基因频率分别为0.0292和0.0686。显性模子下TT基因型和GT+GG基因型之间体重和体重指数没有检测到差别,但G等位基因携带者的血清甘油三酯水平明显低于非G等位基因携带者(1.02(0.74-1.32)与1.35(0.83-2.13)mmol/L,P=0.011)。在调整性别和年龄后,rs1059491的GT+GG基因型与TT基因型相比,超重和肥胖的风险降低了54%(OR0.46,95%CI0.22-0.96,P=0.037)。高甘油三酯血症(OR0.25,95%CI0.08-0.74,P=0.013)和血脂异常(OR0.37,95%CI0.17-0.83,P=0.015)也观察到类似的结果。然而,这些关联在多次测试校正后消失.这项研究表明,编码变体rs1059491名义上与中国南方成年人肥胖和血脂异常的风险降低有关。这些发现将在更大的研究中得到验证,包括更详细的遗传背景信息,生活方式和体重随着年龄的增长而变化。
    In the sulfotransferase (SULT) superfamily, members of the SULT1 family mainly catalyse the sulfonation reaction of phenolic compounds, which is involved in the phase II metabolic detoxification process and plays a key role in endocrine homeostasis. A coding variant rs1059491 in the SULT1A2 gene has been reported to be associated with childhood obesity. This study aimed to investigate the association of rs1059491 with the risk of obesity and cardiometabolic abnormalities in adults. This case‒control study included 226 normal weight, 168 overweight and 72 obese adults who underwent a health examination in Taizhou, China. Genotyping of rs1059491 was performed by Sanger sequencing in exon 7 of the SULT1A2 coding region. Chi-squared tests, one-way ANOVA, and logistic regression models were applied. The minor allele frequencies of rs1059491 in the overweight combined with obesity and control groups were 0.0292 and 0.0686, respectively. No differences in weight and body mass index were detected between the TT genotype and GT + GG genotype under the dominant model, but the levels of serum triglycerides were significantly lower in G-allele carriers than in non-G-allele carriers (1.02 (0.74-1.32) vs. 1.35 (0.83-2.13) mmol/L, P = 0.011). The GT + GG genotype of rs1059491 versus the TT genotype reduced the risk of overweight and obesity by 54% (OR 0.46, 95% CI 0.22-0.96, P = 0.037) after adjusting for sex and age. Similar results were observed for hypertriglyceridaemia (OR 0.25, 95% CI 0.08-0.74, P = 0.013) and dyslipidaemia (OR 0.37, 95% CI 0.17-0.83, P = 0.015). However, these associations disappeared after correction for multiple tests. This study revealed that the coding variant rs1059491 is nominally associated with a decreased risk of obesity and dyslipidaemia in southern Chinese adults. The findings will be validated in larger studies including more detailed information on genetic background, lifestyle and weight change with age.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Hydroxylated bromodiphenyl ethers (OH-BDEs) have raised great concern due to their potential endocrine disrupting effects on humans. In vitro experiments have indicated OH-BDEs can inhibit the activity of thyroid hormone (TH) sulfotransferases (SULTs); however, the molecular mechanism has not been investigated in depth. In this work, we employed 17 OH-BDEs with five or fewer Br atoms, and performed integrated computational simulations to unravel the possible inhibition mechanism of OH-BDEs on human SULT1A1. The molecular docking results demonstrate that OH-BDEs form hydrogen bonds with residues Lys106 and His108, and the neutral OH-BDEs show comparable binding energies with their anionic counterparts. The further hybrid quantum mechanical/molecular mechanical (QM/MM) calculations unravel a metabolic mechanism of OH-BDEs comprised by proton abstraction and sulfation steps. This mechanism is involved in the SULT1A1 inhibition by some OH-BDEs comprised of three or fewer Br atoms, while other OH-BDEs likely only form ternary complexes to competitively inhibit SULT1A1 activity. Moreover, the effect of the hydroxyl group of OH-BDEs on SULT1A1 inhibition potential follows the order of ortho-OH BDE > meta-OH BDE > para-OH BDE. These results provide an insight into the inhibition mechanism of OH-BDEs to SULT1A1 at the molecular level, which are beneficial in illuminating the molecular initiating events involved in the TH disruption of OH-BDEs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    1-Methylpyrene (1-MP) is a ubiquitous environmental pollutant and rodent carcinogen. Its mutagenic activity depends on sequential activation by various CYP and sulfotransferase (SULT) enzymes. Previously we have observed induction of micronuclei and mitotic arrest by 1-MP in a Chinese hamster (V79)-derived cell line expressing both human CYP1A2 and SULT1A1 (V79-hCYP1A2-hSULT1A1), however, the mode of chromosome damage and the involvement of mitotic tubulin structures have not been clarified. In this study, we used immunofluorescent staining of centromere protein B (CENP-B) with the formed micronuclei, and that of β- and γ-tubulin reflecting the structures of mitotic spindle and centrioles, respectively, in V79-hCYP1A2-hSULT1A1 cells. The results indicated that 1-MP induced micronuclei in V79-hCYP1A2-hSULT1A1 cells from 0.125 to 2 μM under a 24 h/0 h (exposure/recovery) regime, while in the parental V79-Mz cells micronuclei were induced by 1-MP only at concentrations ≥ 8 μM; in both cases, the micronuclei induced by 1-MP were predominantly CENP-B positive. Following 54 h of exposure, 1-MP induced mitotic spindle non-congression and centrosome amplification (multipolar mitosis) in V79-hCYP1A2-hSULT1A1 cells, and anaphase/telophase retardation, at concentrations ≥ 0.125 μM with concentration-dependence; while in V79-Mz cells it was inactive up to 8 μM. This study suggests that in mammalian cells proficient in activating enzymes 1-MP may induce chromosome loss and mitotic disturbance, probably by interfering with the mitotic spindle and centrioles.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Hirudin, a blood anticoagulant, is the most potent natural thrombin inhibitor of leech origin. Its application is limited because it is difficult to obtain abundant natural hirudin directly from the leech. Although some bioengineering methods can significantly increase the production of hirudin, the reduced efficacy of recombinant hirudin (rH) remains a critical shortcoming. The lack of sulfation of tyrosine 63 in rH is an important cause of its inadequate performance. This article is the first report of periplasmic co-expression of an rH-I analogue with arylsulfotransferase (ASST) in E. coli BL21(DE3). Co-expressed rH-I analogue with sulfate donor substrate (p-nitrophenyl sulfate potassium) showed anticoagulant (rabbit and goat serum) activity twice more than rH-I analogue expressed without ASST, indicating its potential periplasmic sulfation. Moreover, purified rH-I analogue showed above 4.5 times higher anticoagulant activity compared to therapeutic anti-thrombotic heparin (HE). At the same time, pH-dependent differential solubility was employed to purify rH analogues from fermentation broth, which is a simple, fast and inexpensive purification technology, and can potentially be used for larger scale purification. This will also greatly improve the application of rH in clinical treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Chondroitin sulfate (CS) extracted from animal tissues has been widely used as nutraceutical and pharmaceutical products for osteoarthritis treatment. Here we developed an efficient sulfation-modification system for large scale preparation of CSA in vitro. First, the expression level of C4ST was improved by 30 times with fusion of the chaperone SUMO. Then, glycerol as a protein stabilizer was found to improve rat AST IV stability during the regeneration of cofactor PAPS. Then peptide linkers or protein scaffolds were employed to assemble AST IV and C4ST into artificial complexes to bring the enzymes and PAPS spatially closer and enhance the catalytic efficiency of chondroitin sulfation. Eventually, the system was scaled up to 1 L system and 15 g chondroitin was converted to CSA in 24 h, with a 98 % conversion. The present study made a step further towards the industrial production of CSA with different sulfation degrees.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Chromosomal rearrangements are common in clear cell renal cell carcinoma (ccRCC) and their roles in mediating sensitivity to tyrosine kinase inhibitors (TKIs) and mTOR inhibitors (mTORi) remain elusive.
    We developed an in silico strategy by screening copy number variance (CNV) that was potentially related to TKI or mTORi sensitivity in ccRCC by reproducing the TCGA and GDSC datasets. Candidate genes should be both significantly prognostic and related to drug sensitivity or resistance, and were then validated in vitro.
    ADCYAP1 loss and GNAS gain were associated with sensitivity and resistance and to Cabozantinib, respectively. ACRBP gain and CTBP1 loss were associated with sensitivity and resistance and to Pazopanib, respectively. CDKN2A loss and SULT1A3 gain were associated with sensitivity and resistance and to Temsirolimus, respectively. CCNE1 gain was associated with resistance to Axitinib and LRP10 loss was associated with resistance to Sunitinib. Mutivariate analysis showed ADCYAP1, GNAS, and CCNE1 remained independently prognostic when adjusted for the rest.
    Here we show CNVs of several genes that are associated with sensitivity and resistance to commonly used TKIs and mTORi in ccRCC. Further validation and functional analyses are therefore needed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Benzene is a human carcinogen that requires metabolic activation. We previously observed that benzene and its hydroxylated metabolites induce micronuclei in mammalian cells expressing human CYP2E1. This study was initially aimed to study another endpoint, the induction of gene mutations by those compounds in the same cell models. A V79-derived cell line expressing human CYP2E1 and sulfotransferase (SULT) 1A1 (V79-hCYP2E1-hSULT1A1) pretreated with ethanol (a CYP2E1 stabilizer) was used in the hprt gene mutagenicity assay. Phenol, hydroquinone, catechol, and 1,2,4-trihydroxybenzene all induced gene mutations, while they were inactive, or only weakly positive (hydroquinone), in parental V79-Mz cells. Unexpectedly, benzene was non-mutagenic in both cell lines, but it became positive in V79-hCYP2E1-hSULT1A1 cells using regimes of short exposure/long recovery without ethanol pretreatment, for both gene mutations and micronuclei formation. In silico molecular simulation showed binding energies and positions favorable for each compound to be oxidized by human CYP2E1, benzene demonstrating the highest affinity. By tunnel analysis, ethanol binding did not limit benzene to pass tunnel S, which was specifically active for benzene. However, its end product, acetic acid, decreased the occurrence of tunnel S from 5.4 to 2.2% and extended the length of its bottleneck from 5.5 to 9.0 Å. With residual ethanol molecules still being present in CYP2E1 for a period of time after benzene exposure, the acetic acid formed could limit the entrance of benzene, thus inhibit its metabolic activation. In summary, ethanol may interfere with the activation of benzene to mutagenic metabolites, at least in cultured cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    In this study,liquiritigenin sulfonation was characterized using recombinant human sulfotransferases( SULTs). The chemical structure of liquiritigenin sulfate was determined by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry( UPLC-Q-TOF-MS/MS). Then model fitting and parameter estimation were performed using the Graphpad Prism V5 software. Various SULT enzymes( SULT1 A1,1 A2,1 A3,1 B1,1 C2,1 C4,1 E1 and 2 A1) were able to catalyze the formation of liquiritigenin-7-O-sulfate. Sulfonation of liquiritigenin-7-hydroxy( 7-OH) by these eight SULT enzymes consistently displayed the classical Michaelis-Menten profile. According to the intrinsic clearance( CLint) value,the sulfonation rates of liquiritigenin-7-OH by expressed SULT enzymes followed the following rank order: SULT1 C4 > SULT1 A3 > SULT1 E1 > SULT1 A1 > SULT1 A2 > SULT1 B1 >SULT1 C2>SULT2 A1. Further,liquiritigenin-7-O-sulfonation was significantly correlated with the SULT1 A3 protein levels( P<0. 05).Then,human embryonic kidney( HEK) 293 cells over expressing SULT1 A3( named as HEK-SULT1 A3 cells) were conducted. As a result,liquiritigenin-7-O-sulfate( L-7-S) was rapidly generated upon incubation of the cells with liquiritigenin. Consistent with SULT1 A3,sulfonation of liquiritigenin-7-OH in HEK-SULT1 A3 cells also followed the Michaelis-Menten kinetics. The derived Vmaxvalues was( 0. 315±0. 009) μmol·min-1·g-1,Kmwas( 7. 04±0. 680) μmol·L-1,and CLintwas( 0. 045±0. 005) L·min-1·g-1. Moreover,the sulfonation characters of liquiritigenin( 7-OH) in SULT1 A3 were strongly correlated with that in HEK-SULT1 A3 cells( P<0. 001).The results indicated that HEK-SULT1 A3 cells have shown the catalytic function of SULT1 A3 enzymes. In conclusion,liquiritigenin was subjected to efficient sulfonation,and SULT1 A3 enzyme plays an important role in the sulfonation of liquiritigenin-7-OH. Significant sulfonation should be the main reason for the low bioavailability of liquiritigenin. In addition,HEK-SULT1 A3 cells were conducted and successfully used to evaluate liquiritigenin sulfonation,which will provide an appropriate tool to accurately depict the sulfonation disposition of liquiritigenin in vivo.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Steroid sulfotransferase (SULT) plays physiological roles but its role in clear cell-renal cell carcinoma (ccRCC) remains unclear. We therefore investigated genetic alteration of steroid SULT genes in ccRCC.
    Overexpression of any of SULT genes occurred in ~8% of ccRCC patients. Overexpression of steroid SULT genes was associated with worsened prognosis. Steroid SULT gene-upregulated ccRCC cases showed mutual exclusivity with mutations of VHL, SETD2 and PBRM1, and with focal deletions of 3p and 9p, respectively. Expressions of SULT genes were negatively correlated with that of VHL, SETD2 and PBRM1, respectively. While no cancer-intrinsic pathway was enriched, immune signatures were significantly enriched in SULT gene-overexpressed cases, resulting in significantly fewer infiltration of lymphocytes. Targeting SULT1B1 significantly inhibited growth of ccRCC cells.
    Steroid SULT genes were associated with worsened prognosis and with immune exclusion in ccRCC.
    In silico reproduction of TGGA and GTEx datasets was performed. Data were processed comprehensively using the platforms of cBioPotal, GEPIA, Human Protein Atlas, TIMER, respectively. Functional annotation was analyzed using platforms of NET-GE and GSEA, respectively. In vitro assays were performed for validation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    The accessibility of reactive metabolites to test cells is critical for a genotoxic response. However, sulfo-conjugates formed outside may not readily enter cells, and some metabolites formed by cytochromes P450 (CYPs) may not endure transport. This topic was addressed in the present study, using V79 cells engineered for human CYPs and/or a sulfotransferase (SULT). First, 1-methylpyrene, 1-hydroxymethylpyrene, benzo[a]pyrene, and aflatoxin B1 significantly induced micronuclei in V79-hCYP1A2-hSULT1A1, V79-hSULT1A1, V79-hCYP1A1, and V79-hCYP1A2 cells, respectively. Subsequently, we used these cell lines as external activating systems in various experimental settings in combination with V79-derived target cells lacking critical enzymes. 1-Methylpyrene (activated by CYPs and SULTs sequentially) showed an activity similar to that in V79-hCYP1A2-hSULT1A1 cells, in each following model: a mixed V79-hCYP1A2:V79-hSULT1A1 (1:1) culture, exposure of V79-hCYP1A2 to 1-methylpyrene followed by transfer of medium to V79-hSULT1A1 target cells, and V79-hSULT1A1 communicating with V79-hCYP1A2 through 0.4-μm pores and over a 1-mm distance in a unique transwell system. These results suggest ready transfer of 1-hydroxymethylpyrene formed in V79-hCYP1A2 to V79-hSULT1A1 for further activation. In the last two models, with V79-hSULT1A1 for activation and V79-Mz as target, 1-hydroxymethylpyrene induced micronuclei mildly, suggesting limited intercellular transfer of the ultimate genotoxicant, 1-sulfooxymethylpyrene. Benzo[a]pyrene induced micronuclei in V79-Mz communicating with V79-hCYP1A1 via porous membranes, whereas aflatoxin B1 was inactive in V79-Mz communicating with V79-hCYP1A2. Our results suggest that the sulfo-conjugate tested may have difficulty entering cells for a genotoxic effect, and the reactive metabolite of aflatoxin B1, unlike that of benzo[a]pyrene, could not travel an adequate distance to enter cells. Environ. Mol. Mutagen. 61:224-234, 2020. © 2019 Wiley Periodicals, Inc.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号