Arylsulfotransferase

芳基磺基转移酶
  • 文章类型: Journal Article
    Alternariol is a mycotoxin produced by Alternaria spp. relevant to the food safety area due to its abundance in certain foods. The shortage of data on its toxicology, also as a part of chemical mixtures, prevents setting regulation to limit its abundance in food. To extend knowledge on the possible mechanisms underpinning alternariol toxicology in chemical mixtures, this work assessed the effects of urolithin C, a structurally related gut ellagitannin-derived metabolite, on its absorption and phase II metabolism in a monolayer of Caco-2 cells. A computational study was also used to provide a mechanistic explanation for the results obtained. Urolithin C influenced transport and phase II metabolism of alternariol with a late reduction of transport to the basolateral compartment. Moreover, it caused an early effect in terms of accumulation of alternariol glucuronides in the basolateral compartment, followed by a late reduction of glucuronides in both compartments. Concerning alternariol sulfates, the data collected pointed to a possible competition of urolithin C for the sulfotransferases resulting in a reduced production of alternariol sulfates. Our results provide a compelling line-of-evidence pointing to the need to systematically tackle the evaluation of mycotoxin toxicity in the context of chemical mixture.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The influence of the genetic polymorphism of enzymes and receptors involved in paracetamol metabolism and mechanism of action has not been investigated. This trial in healthy volunteers investigated the link between paracetamol pain relief and the genetic polymorphism of 23 enzymes and receptors.
    This randomized double-blind crossover controlled pilot study took place in the Clinical Pharmacology Department, University Hospital, Clermont-Ferrand, France. Forty-seven Caucasian volunteers were recruited. The trial consisted of two randomized sessions one week apart with oral paracetamol or placebo, and pain changes were evaluated with mechanical pain stimuli. The genetic polymorphism of 23 enzymes and receptors was studied, and correlations were made with pain relief. All tests are two-sided with a type I error at 0.05.
    Paracetamol was antinociceptive compared with placebo (222 ± 482 kPaxmin vs 23 ± 431 kPaxmin; P = 0.0047), and the study showed 30 paracetamol responders and 17 paracetamol nonresponders. Responders were characterized by TRPV1rs224534 A allele, UGT2B15rs1902023 TT genotype, and SULT1A1rs9282861 GG genotype (P < 0.05 for all). These findings confirm for the first time the involvement of a specific TRPV1 rs224534 variant in paracetamol antinociception. They also reveal a new antinociceptive role for specific variants of hepatic phase II enzymes associated with paracetamol metabolism.
    The study warrants larger clinical trials on these potential genomic markers of paracetamol analgesia in patients. Confirmation of the present findings would open the way to effective individualized pain treatment with paracetamol, the most commonly used analgesic worldwide.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Considering the rapid developments in food safety in the past decade in China, it is of importance to obtain insight into what extent safety and risk assessments of chemicals performed for the Caucasian population apply to the Chinese population. The aim of the present study was to determine physiologically based kinetic (PBK) modeling-based predictions for differences between Chinese and Caucasians in terms of metabolic bioactivation and detoxification of the food-borne genotoxic carcinogen estragole. The PBK models were defined based on kinetic constants for hepatic metabolism derived from in vitro incubations using liver fractions of the two ethnic groups, and used to evaluate the inter-ethnic differences in metabolic activation and detoxification of estragole. The models predicted that at realistic dietary intake levels, only 0.02% of the dose was converted to the ultimate carcinogenic metabolite 1\'-sulfooxyestragole in Chinese subjects, whereas this amounted to 0.09% of the dose in Caucasian subjects. Detoxification of 1\'-hydroxyestragole, mainly via conversion to 1\'-oxoestragole, was similar within the two ethnic groups. The 4.5-fold variation in formation of the ultimate carcinogenic metabolite of estragole accompanied by similar rates of detoxification may indicate a lower risk of estragole for the Chinese population at similar levels of exposure. The study provides a proof of principle for how PBK modeling can identify differences in ethnic sensitivity and provide a more refined risk assessment for a specific ethnic group for a compound of concern.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The development of metabolically competent in vitro models is of utmost importance for predicting adverse drug reactions, thereby preventing attrition-related economical and clinical burdens. Using the antiretroviral drug nevirapine (NVP) as a model, this work aimed to validate rat hepatocyte 3D spheroid cultures as competent in vitro systems to assess drug metabolism and bioactivation. Hepatocyte spheroids were cultured for 12 days in a stirred tank system (3D cultures) and exposed to equimolar dosages of NVP and its two major Phase I metabolites, 12-OH-NVP and 2-OH-NVP. Phase I NVP metabolites were detected in the 3D cultures during the whole culture time in the same relative proportions reported in in vivo studies. Moreover, the modulation of SULT1A1 activity by NVP and 2-OH-NVP was observed for the first time, pointing their synergistic effect as a key factor in the formation of the toxic metabolite (12-sulfoxy-NVP). Covalent adducts formed by reactive NVP metabolites with N-acetyl-L-cysteine and bovine serum albumin were also detected by high-resolution mass spectrometry, providing new evidence on the relative role of the reactive NVP metabolites, 12-sulfoxy-NVP, and NVP quinone methide, in toxicity versus excretion pathways. In conclusion, these results demonstrate the validity of the 3D culture system to evaluate drug bioactivation, enabling the identification of potential biomarkers of bioactivation/toxicity, and providing new evidence to the mechanisms underlying NVP-induced toxic events. This model, integrated with the analytical strategies described herein, is of anticipated usefulness to the pharmaceutical industry, as an upstream methodology for flagging drug safety alerts in early stages of drug development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    2,5-二甲基呋喃(DMF)和糠醇(FFA)是在食品加工过程中形成的两种取代呋喃,也被用作食品调味剂。提出DMF和FFA被人磺基转移酶(SULTs)生物活化,所述人磺基转移酶在用于遗传毒性测试的常规细胞系中不表达。因此,除了标准的V79细胞系,我们使用共表达人细胞色素P450(CYP)2E1和人SULT1A1的转染V79衍生细胞系来评估DMF和FFA的遗传毒性。碱性单细胞凝胶电泳(SCGE)测定法用于检测暴露于DMF(0.5h;0.5、1、1.5或2mM)或FFA(3h;1、3、6或15mM)后单链断裂和碱不稳定位点形式的DNA损伤。DMF以浓度依赖性方式诱导V79细胞中的DNA损伤,而与人CYP2E1和SULT1A1的表达无关。暴露于FFA后,几乎没有检测到DNA损伤水平的增加,除了在转染细胞系中的最高浓度下的弱作用。结果表明,通过碱性SCGE测定法检测到的暴露于DMF对V79细胞的DNA损伤与人CYP2E1和SULT1A1无关,并且FFA的遗传毒性作用,根据SCGE的评估,在V79细胞中是最小的。
    2,5-Dimethylfuran (DMF) and furfuryl alcohol (FFA) are two substituted furans that are formed during the processing of foods and have also been used as food flavorings. DMF and FFA are proposed to be bioactivated by human sulfotransferases (SULTs) which are not expressed in conventional cell lines used for genotoxicity testing. Therefore, in addition to the standard V79 cell line, we used a transfected V79 derived cell line co-expressing human cytochrome P450 (CYP) 2E1 and human SULT1A1 to assess the genotoxicity of DMF and FFA. The alkaline single cell gel electrophoresis (SCGE) assay was used to detect DNA damage in the form of single strand breaks and alkali-labile sites after exposure to DMF (0.5h; 0.5, 1, 1.5 or 2mM) or FFA (3h; 1, 3, 6 or 15mM). DMF induced DNA damage in V79 cells in a concentration-dependent manner irrespective of the expression of human CYP2E1 and SULT1A1. Almost no increase in the level of DNA damage was detected after exposure to FFA, except for a weak effect at the highest concentration in the transfected cell line. The results suggest that DNA damage in V79 cells from exposure to DMF detected by the alkaline SCGE assay is independent of human CYP2E1 and SULT1A1, and the genotoxic effect of FFA, as assessed by SCGE, is minimal in V79 cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Tamoxifen is a pharmacological estrogen inhibitor that binds to the estrogen receptor (ER) in breast cells. However, it shows an estrogenic effect in other organs, which causes adverse drug reactions (ADRs). The sulfotransferase 1A1 (SULT1A1) enzyme encoded by the SULT1A1 gene is involved in estrogen metabolism. Previous research has suggested that the SULT1A1 copy number is linked with the plasma estradiol (E2) concentration. Here, a total of 34 premenopausal breast cancer patients, selected from the Thai Tamoxifen (TTAM) Project, were screened for their SULT1A1 copy number, plasma E2 concentration and ADRs. The mean age was 44.3±11.1 years, and they were subtyped as ER+/ progesterone receptor (PR) + (28 patients), ER+/ PR- (5 patients) and ER-/PR- (1 patient). Three patients reported ADRs, which were irregular menstruation (2 patients) and vaginal discharge (1 patient). Most (33) patients had two SULT1A1 copies, with one patient having three copies. The median plasma E2 concentration was 1,575.6 (IQR 865.4) pg/ml. Patients with ADRs had significantly higher plasma E2 concentrations than those patients without ADRs (p = 0.014). The plasma E2 concentration was numerically higher in the patient with three SULT1A1 copies, but this lacked statistical significance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Studies on associations of various polymorphism in xenobiotic metabolizing genes with different cancers including esophageal squamous cell carcinoma (ESCC) are mixed and inconclusive. To evaluate the association of CYP1A1*4, SULT1A1*2 and SULT1A2*2 genotypes with ESCC risk and their modifying effects on different risk factors of ESCC, we conducted a case-control study in Kashmir, India, an area with relative high incidence of ESCC. We recruited 404 histopathologically confirmed ESCC cases, and equal number of controls, individually matched for sex, age and district of residence to respective case. Information was obtained on various dietary, lifestyle and environmental factors in face-to-face interviews, using a structured questionnaire, from each subject. Genotypes were analyzed by polymerase chain reaction, restriction fragment length polymorphism and direct sequencing. Conditional logistic regression models were used to calculate odds ratios (ORs) and 95% confidence intervals (95% CIs). A higher risk was observed in the subjects who harbored variant genotype of CYP1A1*4 (OR = 2.06; 95% CI: 1.28-3.32); and the risk was further enhanced in ever smokers (OR = 3.47; 95% CI: 1.62-7.42), adobe dwellers (OR = 6.71; 95% CI: 3.02-14.89), and biomass fuel users (OR = 5.11; 95% CI: 1.34-19.50). We did not find any significant differences in the polymorphic variants of SULT1A1*2 and SULT1A2*2 between cases and controls. The study indicates that, unlike SULT1A1*2 and SULT1A2*2, the polymorphism of CYP1A1*4 is associated with ESCC risk. However, replicative studies with larger sample size are needed to substantiate our findings.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Male breast cancer (MBC) is rare and poorly understood. Like female breast cancer (FBC), MBCs are highly sensitive to hormonal changes, and hyperestrogenism, specifically, represents a major risk factor for MBC. MBC is considered similar to late-onset, post-menopausal estrogen/progesteron receptors positive FBC (ER+/PR+). Sulfotransferase 1A1 (SULT1A1) is an enzyme involved in the metabolism of estrogens. Recently, SULT1A1 common functional polymorphism Arg(213)His (638G>A) variant has been found to be associated with increased breast cancer (BC) risk, particularly in post-menopausal women. For this reason, we decided to explore whether SULT1A1 Arg(213)His could exert an effect on MBC development. The primary aim of this study was to evaluate the influence of the SULT1A1 Arg(213)His polymorphism on MBC risk. The secondary aim was to investigate possible associations with relevant clinical-pathologic features of MBC. A total of 394 MBC cases and 786 healthy male controls were genotyped for SULT1A1 Arg(213)His polymorphism by PCR-RFLP and high-resolution melting analysis. All MBC cases were characterized for relevant clinical-pathologic features. A significant difference in the distribution of SULT1A1 Arg(213)His genotypes was found between MBC cases and controls (P < 0.0001). The analysis of genotype-specific risk showed a significant increased MBC risk in individuals with G/A (OR 1.97, 95% CI 1.50-2.59; P < 0.0001) and A/A (OR 3.09, 95% CI 1.83-5.23; P < 0.0001) genotypes in comparison to wild-type genotype, under co-dominant model. A significant association between SULT1A1 risk genotypes and HER2 status emerged. Results indicate that SULT1A1 Arg(213)His may act as a low-penetrance risk allele for developing MBC and could be associated with a specific tumor subtype associated with HER2 overexpression.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Comparative Study
    5-羟甲基糠醛(HMF)和糠醇(FFA)是存在于热加工食品中的中等强度的啮齿动物致癌物。假设致癌作用源于磺基转移酶(SULT)介导的生物活化,产生DNA反应性和诱变性硫酸酯,证实了HMF和FFA在小鼠中的代谢途径。已知直系同源SULT形式在底物特异性和组织分布方面显著不同。这可能会影响HMF和FFA诱导的致癌作用。这里,我们研究了30种单独的SULT形式的人类的HMF和FFA磺基缀合,老鼠和老鼠。人SULT1A1(13.7s(-1)M(-1))的HMF磺基缀合的催化效率(kcat/KM),小鼠Sult1a1(15.8s(-1)M(-1))和1d1(4.8s(-1)M(-1))和大鼠Sult1a1(5.3s(-1)M(-1))明显高于所有其他SULT形式的研究(≤0.73s(-1)M(-1))。使用腺苷作为反应性2-磺基甲基呋喃的亲核清除剂监测FFA磺基缀合(在37°C下t1/2=20s)。通过同位素稀释UPLC-MS/MS定量所得加合物N(6)-((呋喃-2-基)甲基)-腺苷(N(6)-MF-A)。N(6)-MF-A的形成率表明,小鼠和大鼠中的hSULT1A1及其直系同源物也是每个物种中FFA磺基缀合的最重要贡献者。一起来看,hSULT1A1的催化能力与mSult1a1在小鼠中的催化能力相当,检测到HMF和FFA致癌作用的物种。由于hSULT1A1在许多不同组织中的表达,这是主要关注的问题。
    5-Hydroxymethylfurfural (HMF) and furfuryl alcohol (FFA) are moderately potent rodent carcinogens that are present in thermally processed foodstuffs. The carcinogenic effects were hypothesized to originate from sulfotransferase (SULT)-mediated bioactivation yielding DNA-reactive and mutagenic sulfate esters, a confirmed metabolic pathway of HMF and FFA in mice. It is known that orthologous SULT forms substantially differ in substrate specificity and tissue distribution. This could influence HMF- and FFA-induced carcinogenic effects. Here, we studied HMF and FFA sulfoconjugation by 30 individual SULT forms of humans, mice and rats. The catalytic efficiencies (k cat/K M) of HMF sulfoconjugation of human SULT1A1 (13.7 s(-1) M(-1)), mouse Sult1a1 (15.8 s(-1) M(-1)) and 1d1 (4.8 s(-1) M(-1)) and rat Sult1a1 (5.3 s(-1) M(-1)) were considerably higher than those of all other SULT forms investigated (≤0.73 s(-1 )M(-1)). FFA sulfoconjugation was monitored using adenosine as a nucleophilic scavenger for the reactive 2-sulfoxymethylfuran (t 1/2 = 20 s at 37 °C). The resulting adduct N (6)-((furan-2-yl)methyl)-adenosine (N (6)-MF-A) was quantified by isotope-dilution UPLC-MS/MS. The rates of N (6)-MF-A formation showed that hSULT1A1 and its orthologues in mice and rats were also the most important contributors to FFA sulfoconjugation in each of the species. Taken together, the catalytic capacity of hSULT1A1 is comparable to that of mSult1a1 in mice, the species in which carcinogenic effects of HMF and FFA were detected. This is of primary concern due to the expression of hSULT1A1 in many different tissues.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • DOI:
    文章类型: English Abstract
    OBJECTIVE: To assess the association of smoked meat intake, SULT1A1 polymorphism as well as their combined effects with breast cancer risk.
    METHODS: A total of 400 newly diagnosed breast cancer cases from a cancer hospital in Sichuan province and 400 healthy controls from participants of physical examination in a hospital in Chengdu city were recruited from May 2007 to July 2009. A valid questionnaire was designed to collect their demographic characteristics and breast cancer risk factors. Daily intake of foods was collected using semi-quantitative frequency questionnaire and then the daily intake of smoked meat was calculated and transformed to energy-adjusted smoked meat intake by the residual method. Gene sequencing was used to analyze SULT1A1 Arg213His genotypes. Multivariable conditional logistic regression was used to estimate adjusted odds ratios (ORs) and 95% confidence intervals (95%CIs).
    RESULTS: The energy-adjusted daily intake of smoked meat (Median (P₂₅, P₇₅)) was 8.65 (3.63, 18.44) g/d in cases and 4.44 (0.19, 8.71) g/d in controls. The frequency of SULT1A1 variant allele was 14.75% (59/400) among cases and 12.75% (51/400) among controls. High energy-adjusted daily intake of smoked meat (≥ 4.44 g/d) was significantly associated with breast cancer risk among premenopausal (OR = 2.31, 95%CI: 1.46 - 3.66) and postmenopausal subjects (OR = 3.13, 95%CI: 1.89 - 5.17). High energy-adjusted daily intake of smoked meat combined with carrying SULT1A1 variant allele elevated breast cancer risk among premenopausal (OR = 3.31, 95%CI: 1.66 - 6.62) and postmenopausal subjects (OR = 3.81, 95%CI: 1.79 - 8.10).
    CONCLUSIONS: High smoked meat intake contributes to high risk of breast cancer. SULT1A1 variant allele increases breast cancer risk among subjects who were exposed to high smoked meat intake.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号