关键词: cingulum parahippocampus precuneus temporal pole tractography

Mesh : Humans Macaca mulatta Temporal Lobe / diagnostic imaging physiology anatomy & histology Parietal Lobe / diagnostic imaging physiology anatomy & histology Animals Diffusion Tensor Imaging / methods Male Adult Female Neural Pathways / diagnostic imaging anatomy & histology physiology Young Adult Axons / physiology Connectome White Matter / diagnostic imaging anatomy & histology physiology Gyrus Cinguli / diagnostic imaging physiology anatomy & histology

来  源:   DOI:10.1002/hbm.26771   PDF(Pubmed)

Abstract:
Neuroimaging studies have consistently demonstrated concurrent activation of the human precuneus and temporal pole (TP), both during resting-state conditions and various higher-order cognitive functions. However, the precise underlying structural connectivity between these brain regions remains uncertain despite significant advancements in neuroscience research. In this study, we investigated the connectivity of the precuneus and TP by employing parcellation-based fiber micro-dissections in human brains and fiber tractography techniques in a sample of 1065 human subjects and a sample of 41 rhesus macaques. Our results demonstrate the connectivity between the posterior precuneus area POS2 and the areas 35, 36, and TG of the TP via the fifth subcomponent of the cingulum (CB-V) also known as parahippocampal cingulum. This finding contributes to our understanding of the connections within the posteromedial cortices, facilitating a more comprehensive integration of anatomy and function in both normal and pathological brain processes. PRACTITIONER POINTS: Our investigation delves into the intricate architecture and connectivity patterns of subregions within the precuneus and temporal pole, filling a crucial gap in our knowledge. We revealed a direct axonal connection between the posterior precuneus (POS2) and specific areas (35, 35, and TG) of the temporal pole. The direct connections are part of the CB-V pathway and exhibit a significant association with the cingulum, SRF, forceps major, and ILF. Population-based human tractography and rhesus macaque fiber tractography showed consistent results that support micro-dissection outcomes.
摘要:
神经影像学研究一致证明了人类前突和颞极(TP)的同时激活,在静息状态和各种高阶认知功能期间。然而,尽管神经科学研究取得了重大进展,但这些大脑区域之间的精确潜在结构连通性仍然不确定。在这项研究中,我们通过在1065例人类受试者和41例恒河猴样本中采用基于分割的人脑纤维显微解剖和纤维束成像技术,研究了前肌和TP的连通性.我们的结果表明,通过扣带(CB-V)的第五个亚组分,也称为海马旁扣带,在后前区域POS2与TP的区域35、36和TG之间建立了连接。这一发现有助于我们理解后内侧皮质内的连接,促进在正常和病理大脑过程中更全面地整合解剖和功能。实践要点:我们的调查深入研究了前突和颞极内的子区域的复杂架构和连通性模式,填补了我们知识的关键空白。我们揭示了后前肌(POS2)与颞极的特定区域(35、35和TG)之间的直接轴突连接。直接连接是CB-V途径的一部分,并表现出与扣带的显着关联,SRF,镊子少校,和ILF。基于人群的人类纤维束造影和恒河猴纤维束造影显示出一致的结果,支持显微解剖结果。
公众号