关键词: Environment biological rhythms chronodisruption circadian clock clock genes day-night history

Mesh : Circadian Rhythm / physiology Animals Humans Photoperiod Environment History, 20th Century Circadian Clocks / physiology Biological Clocks / physiology History, Ancient History, 21st Century Light

来  源:   DOI:10.1080/07420528.2024.2353857

Abstract:
The origin of biological rhythms goes back to the very beginning of life. They are observed in the animal and plant world at all levels of organization, from cells to ecosystems. As early as the 18th century, plant scientists were the first to explain the relationship between flowering cycles and environmental cycles, emphasizing the importance of daily light-dark cycles and the seasons. Our temporal structure is controlled by external and internal rhythmic signals. Light is the main synchronizer of the circadian system, as daily exposure to light entrains our clock over 24 hours, the endogenous period of the circadian system being close to, but not exactly, 24 hours. In 1960, a seminal scientific meeting, the Cold Spring Harbor Symposium on Biological Rhythms, brought together all the biological rhythms scientists of the time, a number of whom are considered the founders of modern chronobiology. All aspects of biological rhythms were addressed, from the properties of circadian rhythms to their practical and ecological aspects. Birth of chronobiology dates from this period, with the definition of its vocabulary and specificities in metabolism, photoperiodism, animal physiology, etc. At around the same time, and right up to the present day, research has focused on melatonin, the circadian neurohormone of the pineal gland, with data on its pattern, metabolism, control by light and clinical applications. However, light has a double face, as it has positive effects as a circadian clock entraining agent, but also deleterious effects, as it can lead to chronodisruption when exposed chronically at night, which can increase the risk of cancer and other diseases. Finally, research over the past few decades has unraveled the anatomical location of circadian clocks and their cellular and molecular mechanisms. This recent research has in turn allowed us to explain how circadian rhythms control physiology and health.
摘要:
生物节律的起源可以追溯到生命的开始。在动植物世界的各个组织中都可以观察到它们,从细胞到生态系统。早在18世纪,植物科学家首先解释了开花周期和环境周期之间的关系,强调日常明暗周期和季节的重要性。我们的时间结构由外部和内部节奏信号控制。光是昼夜节律系统的主要同步器,因为每天暴露在光线下的时间超过24小时,昼夜节律系统的内生周期接近,但不完全是,24小时1960年,一个开创性的科学会议,冷泉港生物节律研讨会,汇集了当时所有的生物节律科学家,其中许多人被认为是现代时间生物学的创始人。生物节律的各个方面都得到了解决,从昼夜节律的特性到它们的实用和生态方面。时间生物学的诞生可以追溯到这个时期,根据其词汇和新陈代谢特异性的定义,光周期,动物生理学,等。大约在同一时间,直到今天,研究集中在褪黑激素上,松果体的昼夜节律神经激素,有关于它模式的数据,新陈代谢,光控制和临床应用。然而,光有双面,因为它作为生物钟夹带剂具有积极作用,但也有有害的影响,因为在晚上长期暴露会导致慢性中断,这会增加患癌症和其他疾病的风险。最后,过去几十年的研究揭示了生物钟的解剖位置及其细胞和分子机制。这项最近的研究反过来使我们能够解释昼夜节律如何控制生理和健康。
公众号