关键词: Abs, integrin aVb3 mAbs B-PDEAEA, poly[(2-acryloyl) ethyl (p-boronic acid benzyl) diethylammonium bromide] BPS, bridged polysilsesquioxanexerogel BSA, bovine serum albumin CA4, combretastatin A4 CAPL, charge reversible pullulan-based CHPNH2, cationic cholesteryl group–bearing pullulans CMC, carboxymethyl cellulose CPLAs, cationic polylactides Cancer therapy Charge-reversal nanoparticles Cit, citraconic anhydride Cya, cysteamine hydrochloride DAP, 2,3-diamino-propionate DCL, dimethyl maleamidic acid-ε-caprolactone DDS, drug delivery system DM, dimyristeroyl DMA, 2,3-dimethylmaleic anhydride DMPA, dimethylol propionic acid DOX, doxorubicin Drug delivery carriers FITC, fluorescein isothiocyanate GO, graphene oxide GSH, glutathione Glu, glutamic acid HCC, hepatocellular carcinoma HEP, 1,4-bis(2-hydroxyethyl) piperazine HMP, p-hydroxylmethylenephenol His, histidine MG, microgels MMPs, matrix metalloproteinases MNP, magnetic nanoparticles NPs, nanoparticles Nanotechnology PAEP, poly(allyl ethylene phosphate) PAH, poly(allylamine) hydrochloride PBAE, poly(β-amino ester) PCL, poly(ε-caprolactone) PDADMAC, poly(diallyldimethylammonium chloride) PEG, polyethylene glycol PEI, polyethylenimine PEO, poly(ethylene oxide) PK, protein kinase PLA, ploylactic acid PLGA, poly(lactic-co-glycolic acid) PLL, poly(l-lysine) PMA, poly(methacrylic acid) PS, pH sensitive PSS, poly(sodium 4-styrenesulfonate) PSSS, poly(styrene-co-4-styrene-sulfonate) PTX, paclitaxel PU, polyurethane PVPON, poly(N-vinylpyrrolidone) ROS, reactive oxygen species SOD, superoxide dismutase Stimuli responsive TMA, 2-(mercaptoethyl) trimethylammonium chloride TUNA, thioundecyl-tetraethyleneglycolester-o-nitrobenzy-lethyldimethyl ammonium bromide pA-F, fluorescein-labeled polyanion

来  源:   DOI:10.1016/j.apsb.2016.05.011   PDF(Sci-hub)   PDF(Pubmed)

Abstract:
Spurred by significant progress in materials chemistry and drug delivery, charge-reversal nanocarriers are being developed to deliver anticancer formulations in spatial-, temporal- and dosage-controlled approaches. Charge-reversal nanoparticles can release their drug payload in response to specific stimuli that alter the charge on their surface. They can elude clearance from the circulation and be activated by protonation, enzymatic cleavage, or a molecular conformational change. In this review, we discuss the physiological basis for, and recent advances in the design of charge-reversal nanoparticles that are able to control drug biodistribution in response to specific stimuli, endogenous factors (changes in pH, redox gradients, or enzyme concentration) or exogenous factors (light or thermos-stimulation).
摘要:
在材料化学和药物输送方面取得重大进展的刺激下,电荷逆转纳米载体正在开发中,用于在空间上提供抗癌制剂,时间和剂量控制的方法。电荷逆转纳米颗粒可以响应于改变其表面电荷的特定刺激而释放其药物有效载荷。它们可以从循环中清除,并被质子化激活,酶促裂解,或分子构象变化.在这次审查中,我们讨论的生理基础,以及电荷逆转纳米粒子设计的最新进展,这些纳米粒子能够控制药物在特定刺激下的生物分布,内源性因素(pH变化,氧化还原梯度,或酶浓度)或外源因素(光或热刺激)。
公众号