wet adhesion

  • 文章类型: Journal Article
    糖尿病伤口是严重的临床并发症,由于大量渗出物而表现为湿润状态,随着炎症的调节受到干扰,严重的氧化应激和反复的细菌感染。由于缺乏包含机械性能的理想敷料,现有的糖尿病伤口治疗方法仍不令人满意。粘附在潮湿的组织表面,快速修复,和不同的治疗益处。在这里,我们制造了一种湿粘合剂,自我修复,具有有效抗菌和促愈合特性的葡萄糖响应药物释放水凝胶,用于糖尿病伤口治疗。PAE水凝胶是用聚(丙烯酸-共-丙烯酰胺)(AA-Am)与动态E-F交联剂集成构建的,由表没食子儿茶素没食子酸酯(EGCG)和4-(2-丙烯酰胺基乙基氨基甲酰基)-3-氟苯基硼酸(AFPBA)组成。由于硼酸酯的动态交联性质,丰富的邻苯二酚基团和氢键,PAE水凝胶表现出优异的机械性能,伸长率约为1000%,对潮湿组织的牢固粘附,快速自我修复,和吸收自身重量10倍的生物流体。重要的是,PAE水凝胶显示EGCG的持续和葡萄糖响应性释放。一起,生物活性PAE水凝胶具有有效的抗菌作用,抗氧化,和体外抗炎特性,并通过减少组织炎症反应加速大鼠的糖尿病伤口愈合,增强血管生成,和巨噬细胞的重编程。总的来说,这种多功能水凝胶为糖尿病伤口的治疗提供了一个简单的解决方案,并显示了其他伤口相关应用场景的潜力。
    Diabetic wounds are serious clinical complications which manifest wet condition due to the mass exudate, along with disturbed regulation of inflammation, severe oxidative stress and repetitive bacterial infection. Existing treatments for diabetic wounds remain unsatisfactory due to the lack of ideal dressings that encompass mechanical performance, adherence to moist tissue surfaces, quick repair, and diverse therapeutic benefits. Herein, we fabricated a wet adhesive, self-healing, glucose-responsive drug releasing hydrogel with efficient antimicrobial and pro-healing properties for diabetic wound treatment. PAE hydrogel was constructed with poly(acrylic acid-co-acrylamide) (AA-Am) integrated with a dynamic E-F crosslinker, which consisted of epigallocatechin gallate (EGCG) and 4-(2-acrylamidoethylcarbamoyl)-3-fluorophenylboronic acid (AFPBA). Due to the dynamic crosslinking nature of boronate esters, abundant catechol groups and hydrogen bonding, PAE hydrogel demonstrated excellent mechanical properties with about 1000 % elongation, robust adhesion to moist tissues, fast self-healing, and absorption of biofluids of 10 times of its own weight. Importantly, PAE hydrogel exhibited sustained and glucose-responsive release of EGCG. Together, the bioactive PAE hydrogel had effective antibacterial, antioxidative, and anti-inflammatory properties in vitro, and accelerated diabetic wound healing in rats via reducing tissue-inflammatory response, enhancing angiogenesis, and reprogramming of macrophages. Overall, this versatile hydrogel provides a straightforward solution for the treatment of diabetic wound, and shows potential for other wound-related application scenarios.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    水凝胶是很有前途的伤口保护材料,但是在潮湿的地方,或水下环境,水凝胶的水化层和溶胀会严重降低附着力,限制其应用。在这项研究中,受强藤壶湿附着力的结构特征的启发,并结合溶剂交换,通过破坏水合层并抵抗溶胀,获得了基于壳聚糖和丙烯酸2-苯氧基乙酯的坚固的湿粘合剂水凝胶(CP-Gel)。因此,CP-Gel即使在水下也对各种界面表现出强的湿粘附力,适应关节运动和皮肤扭曲,抵抗持续的水流,并密封受损的器官。更重要的是,通过促进溶胀实现按需剥离和可控粘附。此外,CP-Gel具有良好的生物安全性,可显著促进海水浸泡伤口愈合,有望用于水接触伤口护理,器官密封,海上紧急救援。
    Hydrogels are promising materials for wound protection, but in wet, or underwater environments, the hydration layer and swelling of hydrogels can seriously reduce adhesion and limit their application. In this study, inspired by the structural characteristics of strong barnacle wet adhesion and combined with solvent exchange, a robust wet adhesive hydrogel (CP-Gel) based on chitosan and 2-phenoxyethyl acrylate was obtained by breaking the hydration layer and resisting swelling. As a result, CP-Gel exhibited strong wet adhesion to various interfaces even underwater, adapted to joint movement and skin twisting, resisted sustained rushing water, and sealed damaged organs. More importantly, on-demand detachment and controllable adhesion were achieved by promoting swelling. In addition, CP-Gel with good biosafety significantly promotes seawater-immersed wound healing and is promising for use in water-contact wound care, organ sealing, and marine emergency rescue.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在过去的几十年中,科学进步揭示了昆虫粘性脚垫的功能形态-一种分泌薄薄的液体膜的柔顺垫。然而,它们粘附的物理化学机制仍然难以捉摸。这里,我们通过同时测量粘性脚垫的粘合力和接触几何形状来探索这些潜在的机制,系住的印度棒昆虫,CarausiusMorosus,体重超过两个数量级。我们发现,我们测量的粘合力与以前使用离心机的测量相似。我们的测量为我们提供了直接探测体内粘附应力的机会,并使用现有的毛细管粘附理论来预测分泌液体的表面张力,并将其与先前的假设进行比较。根据我们的预测,我们发现,产生我们观察到的粘合应力所需的表面张力范围在0.68和12mNm-1${\\rmm}^{-1}$之间。液体的低表面张力将增强竹节虫的脚垫的润湿并促进它们适应各种基材的能力。我们的见解可能会为基于毛细管的仿生设计提供信息,可逆粘合剂,并激发对分泌液体的物理化学性质的未来研究。
    Scientific progress within the last few decades has revealed the functional morphology of an insect\'s sticky footpads-a compliant pad that secretes thin liquid films. However, the physico-chemical mechanisms underlying their adhesion remain elusive. Here, we explore these underlying mechanisms by simultaneously measuring adhesive force and contact geometry of the adhesive footpads of live, tethered Indian stick insects, Carausius morosus, spanning more than two orders of magnitude in body mass. We find that the adhesive force we measure is similar to the previous measurements that use a centrifuge. Our measurements afford us the opportunity to directly probe the adhesive stress in vivo and use existing theory on capillary adhesion to predict the surface tension of the secreted liquid and compare it to previous assumptions. From our predictions, we find that the surface tension required to generate the adhesive stresses we observed ranges between 0.68 and 12 mN m - 1 ${\\rm m}^{-1}$ . The low surface tension of the liquid would enhance the wetting of the stick insect\'s footpads and promote their ability to conform to various substrates. Our insights may inform the biomimetic design of capillary-based, reversible adhesives and motivate future studies on the physico-chemical properties of the secreted liquid.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    生物医学装置的基本要求是在人体中可能被液体如粘液或汗液覆盖的各种不规则3D(三维)非平坦表面上的共形适应性的能力。然而,在复杂的生物表面上起作用的生物器件的可逆粘合界面材料的开发具有挑战性,滑,光滑,和曲面属性。在这里,我们通过整合kirigami-meta结构和垂直自对准吸盘,为唾液覆盖的不规则3D口腔提供了一种超适应性生物粘合剂。扩口吸盘,受章鱼触手的启发,允许粘附到潮湿的表面。此外,具有负泊松比的基于kirigami的拉胀元结构减轻了由拉伸应变引起的应力,从而减轻由弯曲表面引起的应力并且使得能够与表面共形接触。因此,所提出的拉胀粘合剂的粘合强度是在高度弯曲的猪腭上具有平坦骨架的粘合剂的两倍。对于潜在的应用,拟议的拉胀粘合剂安装在义齿上,并在人类受试者的可行性评估中成功执行。这两种结构的集成设计可以为生物医学应用提供功能和潜力。
    An essential requirement for biomedical devices is the capability of conformal adaptability on diverse irregular 3D (three-dimensional) nonflat surfaces in the human body that may be covered with liquids such as mucus or sweat. However, the development of reversible adhesive interface materials for biodevices that function on complex biological surfaces is challenging due to the wet, slippery, smooth, and curved surface properties. Herein, we present an ultra-adaptive bioadhesive for irregular 3D oral cavities covered with saliva by integrating a kirigami-metastructure and vertically self-aligning suction cups. The flared suction cup, inspired by octopus tentacles, allows adhesion to moist surfaces. Additionally, the kirigami-based auxetic metastructure with a negative Poisson\'s ratio relieves the stress caused by tensile strain, thereby mitigating the stress caused by curved surfaces and enabling conformal contact with the surface. As a result, the adhesive strength of the proposed auxetic adhesive is twice that of adhesives with a flat backbone on highly curved porcine palates. For potential application, the proposed auxetic adhesive is mounted on a denture and performs successfully in human subject feasibility evaluations. An integrated design of these two structures may provide functionality and potential for biomedical applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    新生儿低血糖是新生儿常见病,这可能会导致能量短缺,并伴随着不可逆转的大脑和神经损伤。在这里,我们提出了一种治疗新生儿低血糖的新方法,该方法涉及粘合剂聚乙烯吡咯烷酮/没食子酸(PVP/GA)膜负载葡萄糖。通过混合它们的乙醇溶液和干燥复合物可以获得具有松散交联的PVP/GA膜。当将这种软膜沉积到湿纸巾上时,它可以吸收界面水,形成具有粗糙表面的水凝胶,这有利于水凝胶和组织之间的紧密接触。同时,水凝胶和组织中的官能团建立共价键和非共价键,导致强大的生物粘附。此外,粘附的PVP/GA水凝胶可以根据需要分离而不损伤组织。此外,PVP/GA薄膜表现出优异的抗菌性能和生物相容性。值得注意的是,这些薄膜有效地加载葡萄糖并将其输送到新生兔的舌下组织,展示了对新生儿低血糖的令人信服的治疗效果。PVP/GA薄膜的强度包括在口腔的潮湿和高度动态环境中优异的湿粘附性,按需支队,抗菌功效,生物相容性,简单的准备。因此,这种创新的薄膜为各种生物医学应用带来了希望,包括但不限于可穿戴设备,密封剂,和药物输送系统。
    Neonatal hypoglycemia is a common disease in newborns, which can precipitate energy shortage and follow by irreversible brain and neurological injury. Herein, we present a novel approach for treating neonatal hypoglycemia involving an adhesive polyvinylpyrrolidone/gallic acid (PVP/GA) film loading glucose. The PVP/GA film with loose cross-linking can be obtained by mixing their ethanol solution and drying complex. When depositing this soft film onto wet tissue, it can absorb interfacial water to form a hydrogel with a rough surface, which facilitates tight contact between the hydrogel and tissue. Meanwhile, the functional groups in the hydrogels and tissues establish both covalent and non-covalent bonds, leading to robust bioadhesion. Moreover, the adhered PVP/GA hydrogel can be detached without damaging tissue as needed. Furthermore, the PVP/GA films exhibit excellent antibacterial properties and biocompatibility. Notably, these films effectively load glucose and deliver it to the sublingual tissue of newborn rabbits, showcasing a compelling therapeutic effect against neonatal hypoglycemia. The strengths of the PVP/GA film encompass excellent wet adhesion in the wet and highly dynamic environment of the oral cavity, on-demand detachment, antibacterial efficacy, biocompatibility, and straightforward preparation. Consequently, this innovative film holds promise for diverse biomedical applications, including but not limited to wearable devices, sealants, and drug delivery systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    实现水下粘附具有重大挑战,主要是由于界面水的存在,这限制了胶粘剂的潜在应用。在这项研究中,我们提出了一种简单环保的一锅法,用于合成由硫辛酸组成的无溶剂超分子TPFe生物粘合剂,原花青素,和FeCl3。生物粘合剂表现出优异的生物相容性和光热抗菌性能,并在湿和干环境中对各种基材表现出有效的粘附力。重要的是,这种生物粘合剂在钢上的粘合强度超过1.2MPa,在猪皮肤上的粘合强度超过100kPa,大于大多数报道的生物粘合剂的粘合强度。此外,生物粘合剂表现出有效阻止出血的能力,及时闭合伤口,促进大鼠皮肤创伤模型的创面愈合。因此,TPFe生物粘合剂在生物医学领域具有作为快速止血和促进伤口愈合的医用生物粘合剂的潜力。该研究为开发具有牢固湿粘附性的生物粘合剂提供了新思路。
    Achieving underwater adhesion possesses a significant challenge, primarily due to the presence of interfacial water, which restricts the potential applications of adhesives. In this study, we present a straightforward and environmentally friendly one-pot approach for synthesizing a solvent-free supramolecular TPFe bioadhesive composed of thioctic acid, proanthocyanidins, and FeCl3. The bioadhesive exhibits excellent biocompatibility and photothermal antibacterial properties and demonstrates effective adhesion on various substrates in both wet and dry environments. Importantly, the adhesive strength of this bioadhesive on steel exceeds 1.2 MPa and that on porcine skin exceeds 100 kPa, which is greater than the adhesive strength of most reported bioadhesives. In addition, the bioadhesive exhibits the ability to effectively halt bleeding, close wounds promptly, and promote wound healing in the rat skin wound model. Therefore, the TPFe bioadhesive has potential as a medical bioadhesive for halting bleeding quickly and promoting wound healing in the biomedical field. This study provides a new idea for the development of bioadhesives with firm wet adhesion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    开发用于预防术后粘连的抗粘连水凝胶是一个持续的挑战,特别是在实现优异的防污性能和有效的原位组织保留之间的平衡。在这项研究中,我们提出了一种独特的方法,设计了具有仿生微结构的单组分Janus两性离子水凝胶贴片。Janus贴剂是通过磺基甜菜碱甲基丙烯酸酯与N,N'-亚甲基双(2-丙烯酰胺)作为交联剂。当Janus水凝胶贴片应用于受创伤的组织时,通过在一侧互连凹槽分开的六边形小平面的结合为其提供了持久且可靠的原位保留能力。相对的平坦表面对细菌表现出突出的抵抗力,蛋白质,和细胞粘附,由于两性离子聚合物的超亲水性和优异的防污特性。这种双重功能使Janus水凝胶贴片能够减轻创伤和周围组织之间的粘连。六边形和凹槽仿生微结构有利于快速排水,促进与组织的快速接触,以增加粘附强度,而独立的六边形微面增强剥离能量。在体内环境中,具有表面微结构的Janus两性离子水凝胶贴片与盲肠表面形成相互嵌入的结构,最大限度地减少打滑和脱离的可能性。值得注意的是,涉及腹壁盲肠损伤的体内实验表明,与商业对照相比,Janus两性离子水凝胶贴片具有优异的抗粘连效果。因此,Janus水凝胶贴片,以其仿生微结构表面而著称,在生物医学领域为避免术后粘连提供了巨大的潜力。
    The development of anti-adhesion hydrogels for preventing postoperative adhesions is an ongoing challenge, particularly in achieving a balance between exceptional antifouling properties and effective in situ tissue retention. In this study, we propose a unique approach with the design of a single-component Janus zwitterionic hydrogel patch featuring a bionic microstructure. The Janus patches were prepared through free radical polymerization of sulfobetaine methacrylate with N, N\'-methylenebis(2-propenamide) as the cross-linker. The incorporation of hexagonal facets separated by interconnecting grooves on one side imparts durable and reliable in situ retention capabilities to the Janus hydrogel patch when it is applied to traumatized tissues. The opposing flat surface exhibits outstanding resistance to bacteria, proteins, and cell adhesion, due to the superhydrophilicity and excellent antifouling characteristics of zwitterionic polymers. This dual functionality empowers the Janus hydrogel patch to mitigate adhesions between traumatized and surrounding tissues. The hexagonal and groove bionic microstructures facilitate rapid drainage, promoting swift contact with the tissue for increased adhesion strength, while independent hexagonal microfacets enhance the peeling energy. In an in vivo setting, Janus zwitterionic hydrogel patches with surface microstructures form mutually embedded structures with the cecum surface, minimizing the likelihood of slippage and detachment. Remarkably, in vivo experiments involving abdominal wall cecum injuries illustrate the Janus zwitterionic hydrogel patch\'s superior anti-adhesion effectiveness compared to commercial controls. Thus, the Janus hydrogel patch, distinguished by its bionic microstructure surface, presents substantial potential in the biomedical field for averting postoperative adhesions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在急诊医学中寻求有效的止血剂至关重要,特别是在动态和高压伤口环境中管理大量出血。传统的自胶凝粉末,虽然由于其易于应用和快速行动而有益,在如此具有挑战性的条件下做不到。为了弥合这个差距,该研究介绍了一种新型的自胶凝粉末,它结合了超快共价凝胶和强大的湿粘附力,在急性出血控制方面取得了重大进展。该三元体系包含形成水凝胶骨架的ε-聚赖氨酸(ε-PLL)和4臂聚乙二醇琥珀酰琥珀酸酯(4臂-PEG-NHS)。Na2HPO4作为“H+吸盘”加速酰胺化反应,将胶凝时间缩短到10s以下,对立即限制失血至关重要。此外,PEG链亲水性促进界面血液的有效吸收,增加生成的水凝胶的交联密度和加强其组织结合,从而产生优异的机械和湿粘附性能。体外实验揭示了优化配方的特殊组织顺应性,促凝血活性,生物相容性和抗菌功效。在猪心脏损伤和动脉穿刺模型中,它的性能优于商业止血剂Celox,证实其快速有效的止血。最后,这项研究提出了一种转化止血的方法,为大出血的应急管理提供可靠和有效的解决方案。
    The quest for efficient hemostatic agents in emergency medicine is critical, particularly for managing massive hemorrhages in dynamic and high-pressure wound environments. Traditional self-gelling powders, while beneficial due to their ease of application and rapid action, fall short in such challenging conditions. To bridge this gap, the research introduces a novel self-gelling powder that combines ultrafast covalent gelation and robust wet adhesion, presenting a significant advancement in acute hemorrhage control. This ternary system comprises ε-polylysine (ε-PLL) and 4-arm polyethylene glycol succinyl succinate (4-arm-PEG-NHS) forming the hydrogel framework. Na2HPO4 functions as the \"H+ sucker\" to expedite the amidation reaction, slashing gelation time to under 10 s, crucial for immediate blood loss restriction. Moreover, PEG chains\' hydrophilicity facilitates efficient absorption of interfacial blood, increasing the generated hydrogel\'s cross-linking density and strengthens its tissue bonding, thereby resulting in excellent mechanical and wet adhesion properties. In vitro experiments reveal the optimized formulation\'s exceptional tissue compliance, procoagulant activity, biocompatibility and antibacterial efficacy. In porcine models of heart injuries and arterial punctures, it outperforms commercial hemostatic agent Celox, confirming its rapid and effective hemostasis. Conclusively, this study presents a transformative approach to hemostasis, offering a reliable and potent solution for the emergency management of massive hemorrhage.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    对改进的湿粘合剂的需求推动了对包含二羟基苯丙氨酸(DOPA)和母体儿茶酚的相关类似物的贻贝启发材料的研究,但是它们对氧化的敏感性限制了这些功能的实际应用。这里,我们研究了儿茶酚类似物二羟基苯甲酰胺(DHB)和羟基吡啶酮(HOPO)的分子水平粘附与pH的关系。我们发现邻苯二酚类似物的分子结构会影响它们在碱性条件下对氧化的敏感性,HOPO正在成为适用于各种环境条件的耐pH粘合剂的特别有前途的候选者。
    The need for improved wet adhesives has driven research on mussel-inspired materials incorporating dihydroxyphenylalanine (DOPA) and related analogs of the parent catechol, but their susceptibility to oxidation limits practical application of these functionalities. Here, we investigate the molecular-level adhesion of the catechol analogs dihydroxybenzamide (DHB) and hydroxypyridinone (HOPO) as a function of pH. We find that the molecular structure of the catechol analogs influences their susceptibility to oxidation in alkaline conditions, with HOPO emerging as a particularly promising candidate for pH-tolerant adhesives for diverse environmental conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    适应不规则形状伤口的止血粉,允许容易的应用和稳定的存储,在急救出血控制方面越来越受欢迎。然而,传统的粉末通常提供弱的血栓支持,并表现出有限的组织粘附,使它们容易被血液移位。受纤维蛋白纤维凝固介质的启发,我们开发了由带正电的季铵化壳聚糖(QCS)和带负电的邻苯二酚改性的藻酸盐(Cat-SA)组成的双组分止血粉末。应用于伤口后,双组分粉末(QCS/Cat-SA)快速吸收血浆并溶解成链。这些链相互作用形成一个网络,能有效结合和捕获聚集的红细胞和血小板,最终导致产生持久和强大的血栓。重要的是,这些相互连接的聚合物粘附在损伤部位,提供保护,防止血液引起的血栓破坏。受益于这些合成特性,QCS/Cat-SA在动脉损伤和不可压缩的肝穿刺伤口中与商业止血粉末如Celox™相比表现出优异的止血性能。重要的是,QCS/Cat-SA具有优异的抗菌活性,细胞相容性,和血液相容性。QCS/Cat-SA的这些优点,包括强烈的血液凝固,湿组织粘附,抗菌活性,生物安全,易用性,稳定的储存,使其成为紧急情况下有前途的止血剂。
    Hemostatic powders that adapt to irregularly shaped wounds, allowing for easy application and stable storage, have gained popularity for first-aid hemorrhage control. However, traditional powders often provide weak thrombus support and exhibit limited tissue adhesion, making them susceptible to dislodgment by the bloodstream. Inspired by fibrin fibers coagulation mediator, we have developed a bi-component hemostatic powder composed of positively charged quaternized chitosan (QCS) and negatively charged catechol-modified alginate (Cat-SA). Upon application to the wound, the bi-component powders (QCS/Cat-SA) rapidly absorb plasma and dissolve into chains. These chains interact with each other to form a network, which can effectively bind and entraps clustered red blood cells and platelets, ultimately leading to the creation of a durable and robust thrombus. Significantly, these interconnected polymers adhere to the injury site, offering protection against thrombus disruption caused by the bloodstream. Benefiting from these synthetic properties, QCS/Cat-SA demonstrates superior hemostatic performance compared to commercial hemostatic powders like Celox™ in both arterial injuries and non-compressible liver puncture wounds. Importantly, QCS/Cat-SA exhibits excellent antibacterial activity, cytocompatibility, and hemocompatibility. These advantages of QCS/Cat-SA, including strong blood clotting, wet tissue adherence, antibacterial activity, biosafety, ease of use, and stable storage, make it a promising hemostatic agent for emergency situations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号