vacuole

液泡
  • 文章类型: Journal Article
    Rab家族的小GTP酶协调真核生物中的多个膜融合和运输事件。在真菌中,RabGTPase,Ypt7在晚期内体运输中起关键作用,并且是空泡生物发生和遗传中同型融合事件所必需的。在这项研究中,我们在新生隐球菌中确定了一个推定的YPT7同源物,在免疫功能低下的个体中引起威胁生命的脑膜脑炎的真菌病原体。作为正在进行的努力的一部分,以了解C.Neformans的铁获取机制,我们确立了Ypt7在血红素作为唯一铁源的生长中的作用。YPT7的缺失也导致空泡形态异常,有缺陷的内吞运输和自噬,和分泌的液泡酸性磷酸酶Aph1的错误定位。Ypt7定位于液泡膜和液泡与线粒体(vCLAMP)之间的膜接触位点,蛋白质的丢失会损害电子传递链抑制剂的生长。此外,Ypt7是在39°C下强劲生长所必需的,一种可能涉及钙调磷酸酶信号通路的表型,因为ypt7突变体显示出对钙调磷酸酶特异性抑制剂的敏感性增加,FK506和环孢菌素A;突变体在限制或高水平的钙中也具有受损的生长。最后,Ypt7是与巨噬细胞相互作用期间存活所必需的,在小鼠吸入模型中,对ypt7突变体的毒力进行了减毒,从而证明了膜运输功能在隐球菌病中的重要性。
    Small GTPases of the Rab family coordinate multiple membrane fusion and trafficking events in eukaryotes. In fungi, the Rab GTPase, Ypt7, plays a critical role in late endosomal trafficking, and is required for homotypic fusion events in vacuole biogenesis and inheritance. In this study, we identified a putative YPT7 homologue in Cryptococcus neoformans, a fungal pathogen causing life threatening meningoencephalitis in immunocompromised individuals. As part of an ongoing effort to understand mechanisms of iron acquisition in C. neoformans, we established a role for Ypt7 in growth on heme as the sole iron source. Deletion of YPT7 also caused abnormal vacuolar morphology, defective endocytic trafficking and autophagy, and mislocalization of Aph1, a secreted vacuolar acid phosphatase. Ypt7 localized to the vacuolar membrane and membrane contact sites between the vacuole and mitochondria (vCLAMPs), and loss of the protein impaired growth on inhibitors of the electron transport chain. Additionally, Ypt7 was required for robust growth at 39°C, a phenotype likely involving the calcineurin signaling pathway because ypt7 mutants displayed increased susceptibility to the calcineurin-specific inhibitors, FK506 and cyclosporin A; the mutants also had impaired growth in either limiting or high levels of calcium. Finally, Ypt7 was required for survival during interactions with macrophages, and ypt7 mutants were attenuated for virulence in a mouse inhalation model thus demonstrating the importance of membrane trafficking functions in cryptococcosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    植物细胞中的液泡是具有独特特征的最突出的细胞器,包括裂解功能,蛋白质和糖的储存,细胞体积平衡,和防御反应。尽管它们的主要尺寸和功能多功能性,植物中液泡的性质和生物发生本身仍然难以捉摸,已经提出了几种模型。最近,我们使用全细胞3D电子断层扫描(ET)技术以纳米分辨率研究了液泡的形成和分布,并证明了小液泡来自多囊体成熟和融合。良好的样品制备是获得高质量电子层析成像图像的关键步骤。在这一章中,我们提供了拟南芥根细胞中高分辨率ET的详细样品制备方法,包括高压冷冻,随后的冷冻替代固定,嵌入,和连续切片。
    Vacuoles in plant cells are the most prominent organelles that harbor distinctive features, including lytic function, storage of proteins and sugars, balance of cell volume, and defense responses. Despite their dominant size and functional versatility, the nature and biogenesis of vacuoles in plants per se remain elusive and several models have been proposed. Recently, we used the whole-cell 3D electron tomography (ET) technique to study vacuole formation and distribution at nanometer resolution and demonstrated that small vacuoles are derived from multivesicular body maturation and fusion. Good sample preparation is a critical step to get high-quality electron tomography images. In this chapter, we provide detailed sample preparation methods for high-resolution ET in Arabidopsis thaliana root cells, including high-pressure freezing, subsequent freeze-substitution fixation, embedding, and serial sectioning.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    核成分通过自噬的选择性降解,称为核吞噬,是从酵母到哺乳动物观察到的重要过程,对于维持核稳态和调节核功能至关重要。在酿酒酵母中,核吞噬以两种不同的方式发生:一种涉及自噬体的形成,用于核衍生囊泡(NDV)的隔离和液泡运输,另一个是液泡膜内陷,将NDV吸收到液泡中,称为大核自噬和微核自噬,分别。本章介绍了分析和量化酵母中这些核吞噬途径活性的方法。
    The selective degradation of nuclear components via autophagy, termed nucleophagy, is an essential process observed from yeasts to mammals and crucial for maintaining nucleus homeostasis and regulating nucleus functions. In the budding yeast Saccharomyces cerevisiae, nucleophagy occurs in two different manners: one involves autophagosome formation for the sequestration and vacuolar transport of nucleus-derived vesicles (NDVs), and the other proceeds with the invagination of the vacuolar membrane for the uptake of NDVs into the vacuole, termed macronucleophagy and micronucleophagy, respectively. This chapter describes methods to analyze and quantify activities of these nucleophagy pathways in yeast.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    质子泵浦视紫红质(PPR)利用阳光产生细胞能量。它们广泛分布在海洋浮游植物中,最近被证明存在于海洋硅藻的液泡膜中,使液泡成为第二个光转换细胞器。当然,第一,叶绿体,是光合作用发生的地方。然而,两种光驱动的细胞能源是完全不同的,在许多方面,相互补充。光合作用在低至中等光照强度下效果最好,在强光下被抑制,而PPR预计在高光强度下效果最好。光合速率随着温度的降低而降低,并且受到铁的限制,虽然PPR光化学不受铁的直接限制,并且不受温度的影响。因此,这两种光养系统在不同的条件下是有利的。将PPR放置在液泡中可以有益于这种互补的情况,其中根据环境条件有利于一个或另一个光养过程。在这里,液泡中PPR的存在可能对生长和存活特别有益,因为细胞器通常以多磷酸盐的磷酸酐键的形式充当细胞能量的储存位点。我们假设这种互补行为,以及将PPR产生的多余能量作为高能聚磷酸盐储存在液泡中的能力,代表了海洋中重要的生存策略,在那里,光,铁含量,和温度在各种空间和时间尺度上变化很大。
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    三萜皂苷,通过甲羟戊酸(MVA)途径在细胞质中合成,对植物中的病原体和害虫提供保护,并为人类提供健康益处。然而,三萜皂苷在细胞区室之间运输的机制仍未表征。这里,我们表征了液泡膜局部多药和有毒化合物挤压转运蛋白,GmMATE100(由Glyma.18G143700编码),从大豆(甘氨酸maxL.)。GmMATE100与大豆皂甙生物合成基因共表达,它的表达是由MeJA处理诱导的,这也导致大豆皂甙在大豆根中积累。GmMATE100在酵母系统中以低亲和力有效地将多种B型大豆皂甙和A型大豆皂甙从细胞溶质运输到液泡。GmMATE100功能丧失突变体显示大豆根中A型和B型大豆皂甙含量显着降低。这项研究不仅表征了第一个大豆三萜皂苷转运蛋白,而且还为合理设计大豆植物中大豆皂苷含量和组成以调节其在作物环境中的水平提供了新知识。
    Triterpenoid saponins, synthesized via the mevalonic acid (MVA) pathway in the cytoplasm, provide protection against pathogens and pests in plants and health benefits for humans. However, the mechanisms by which triterpenoid saponins are transported between cellular compartments remain uncharacterized. Here, we characterize a tonoplast localized multidrug and toxic compound extrusion transporter, GmMATE100 (encoded by Glyma.18G143700), from soybean (Glycine max L.). GmMATE100 is co-expressed with soyasaponin biosynthetic genes, and its expression was induced by MeJA treatment, which also led to soyasaponin accumulation in soybean roots. GmMATE100 efficiently transports multiple type-B soyasaponins as well as type-A soyasaponins with low affinity from the cytosol to the vacuole in a yeast system. The GmMATE100 loss-of-function mutant showed a significant decrease in type-A and type-B soyasaponin contents in soybean roots. This study not only characterized the first soybean triterpenoid saponin transporter but also provided new knowledge for the rational engineering of soyasaponin content and composition in soybean plants to modulate their levels within crop environments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    酵母液泡作为酸性降解细胞器执行关键的细胞功能,储藏室,和信号集线器。这些功能是由重要的蛋白质复合物介导的,包括液泡型H+-ATP酶(V-ATP酶),负责细胞器酸化。为了更详细地了解液泡功能,我们对分离的液泡进行了交联质谱,检测许多已知的以及新颖的蛋白质-蛋白质相互作用。其中,我们确定了未表征的含TLDc结构域的蛋白Rtc5是V-ATPase的新型相互作用蛋白。我们进一步分析了Rtc5和Oxr1的影响,Oxr1是唯一一种含有TLDc结构域的酵母蛋白,关于V-ATP酶功能。我们发现Rtc5和Oxr1在体内促进液泡V-ATPase的分解,抵消RAVE复合体的作用,V-ATPase组装伴侣。此外,Oxr1对于在该室中保留V-ATPase的高尔基体特异性亚基是必需的。总的来说,我们的结果揭示了酵母TLDc结构域蛋白作为V-ATPase调节因子的体内作用,强调了这种关键蛋白质复合物的多方面调节。
    Yeast vacuoles perform crucial cellular functions as acidic degradative organelles, storage compartments, and signaling hubs. These functions are mediated by important protein complexes, including the vacuolar-type H+-ATPase (V-ATPase), responsible for organelle acidification. To gain a more detailed understanding of vacuole function, we performed cross-linking mass spectrometry on isolated vacuoles, detecting many known as well as novel protein-protein interactions. Among these, we identified the uncharacterized TLDc-domain-containing protein Rtc5 as a novel interactor of the V-ATPase. We further analyzed the influence of Rtc5 and of Oxr1, the only other yeast TLDc-domain-containing protein, on V-ATPase function. We find that both Rtc5 and Oxr1 promote the disassembly of the vacuolar V-ATPase in vivo, counteracting the role of the RAVE complex, a V-ATPase assembly chaperone. Furthermore, Oxr1 is necessary for the retention of a Golgi-specific subunit of the V-ATPase in this compartment. Collectively, our results shed light on the in vivo roles of yeast TLDc-domain proteins as regulators of the V-ATPase, highlighting the multifaceted regulation of this crucial protein complex.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    可溶性N-乙基马来酰亚胺敏感因子附着蛋白受体(SNARE)复合物在膜融合后形成由16层相互作用侧链组成的4螺旋卷曲螺旋束。中央层(层0)是高度保守的,包含三个谷氨酰胺(Q)和一个精氨酸(R),因此SNARE被归类为Qa-,Qb-,QC-,和R-SNAREs。酿酒酵母中的同源液泡融合需要SNAREsVam3(Qa),Vti1(Qb),Vam7(Qc),和Nyv1(R)。然而,缺乏NYV1(nyv1Δ)的酵母菌株没有显示液泡片段化,而vam3Δ和vam7Δ菌株显示出破碎的液泡。这里,我们提供了遗传证据,表明使用新分离的ykt6突变体,R-SNAREsYkt6和Nyv1在体内空泡同型融合中功能冗余。我们观察到ykt6-104突变体在液泡形态上没有缺陷,但是ykt6-104nyv1Δ双突变体具有高度碎片化的液泡。此外,我们显示了由vam7-Q284R突变引起的同型液泡融合的缺陷被nyv1-R192Q或ykt6-R165Q突变所补偿,在SNARE复合物的0层中保持了3Q:1R的比例,表明Nyv1可与液泡SNARE复合体中的Ykt6交换。出乎意料的是,我们发现Ykt6与胞吐Q-SNAREs组装时,内在胞吐R-SNAREsSnc1及其旁系物Snc2失去了组装成胞吐SNARE复合体的能力。这些结果表明,当其他R-SNARE功能失调时,Ykt6可以作为备份,并且SNARE复合物的这种灵活组装可以帮助细胞维持囊泡转运网络的鲁棒性。
    The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex forms a 4-helix coiled-coil bundle consisting of 16 layers of interacting side chains upon membrane fusion. The central layer (layer 0) is highly conserved and comprises three glutamines (Q) and one arginine (R), and thus SNAREs are classified into Qa-, Qb-, Qc-, and R-SNAREs. Homotypic vacuolar fusion in Saccharomyces cerevisiae requires the SNAREs Vam3 (Qa), Vti1 (Qb), Vam7 (Qc), and Nyv1 (R). However, the yeast strain lacking NYV1 (nyv1Δ) shows no vacuole fragmentation, whereas the vam3Δ and vam7Δ strains display fragmented vacuoles. Here, we provide genetic evidence that the R-SNAREs Ykt6 and Nyv1 are functionally redundant in vacuole homotypic fusion in vivo using a newly isolated ykt6 mutant. We observed the ykt6-104 mutant showed no defect in vacuole morphology, but the ykt6-104 nyv1Δ double mutant had highly fragmented vacuoles. Furthermore, we show the defect in homotypic vacuole fusion caused by the vam7-Q284R mutation was compensated by the nyv1-R192Q or ykt6-R165Q mutations, which maintained the 3Q:1R ratio in the layer 0 of the SNARE complex, indicating that Nyv1 is exchangeable with Ykt6 in the vacuole SNARE complex. Unexpectedly, we found Ykt6 assembled with exocytic Q-SNAREs when the intrinsic exocytic R-SNAREs Snc1 and its paralog Snc2 lose their ability to assemble into the exocytic SNARE complex. These results suggest that Ykt6 may serve as a backup when other R-SNAREs become dysfunctional and that this flexible assembly of SNARE complexes may help cells maintain the robustness of the vesicular transport network.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    膜蛋白Niemann-PickC1型(NPC1,在酵母中称为NCR1)是真核生物中甾醇稳态的核心。酿酒酵母NCR1位于液泡膜,建议携带固醇穿过保护性糖萼并将其沉积到液泡膜中。然而,缺乏真菌中液泡糖萼的文献,固醇易位的机制尚不清楚。这里,我们提供了支持分离的酿酒酵母液泡中存在糖萼的证据,并报道了两种不同构象的NCR1的四种cryo-EM结构,名为紧张和放松。这两种构象说明了固醇通过由腔结构域形成的通道的运动,从而绕过糖萼所提供的屏障。基于这些结构并与抗性结瘤分裂(RND)超家族的其他成员进行比较,我们提出了一个转运模型,该模型将腔结构域的变化与蛋白质跨膜区域内的质子化和去质子化循环联系起来。我们的模型表明,NPC蛋白通过广义RND机制起作用,其中质子动力驱动跨膜结构域的构象变化,这些结构域变构耦合到腔/细胞外结构域以促进固醇转运。
    The membrane protein Niemann-Pick type C1 (NPC1, named NCR1 in yeast) is central to sterol homeostasis in eukaryotes. Saccharomyces cerevisiae NCR1 is localized to the vacuolar membrane, where it is suggested to carry sterols across the protective glycocalyx and deposit them into the vacuolar membrane. However, documentation of a vacuolar glycocalyx in fungi is lacking, and the mechanism for sterol translocation has remained unclear. Here, we provide evidence supporting the presence of a glycocalyx in isolated S. cerevisiae vacuoles and report four cryo-EM structures of NCR1 in two distinct conformations, named tense and relaxed. These two conformations illustrate the movement of sterols through a tunnel formed by the luminal domains, thus bypassing the barrier presented by the glycocalyx. Based on these structures and on comparison with other members of the Resistance-Nodulation-Division (RND) superfamily, we propose a transport model that links changes in the luminal domains with a cycle of protonation and deprotonation within the transmembrane region of the protein. Our model suggests that NPC proteins work by a generalized RND mechanism where the proton motive force drives conformational changes in the transmembrane domains that are allosterically coupled to luminal/extracellular domains to promote sterol transport.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    糖最终将被出口的转运蛋白(SWEET)是最近发现的植物糖转运蛋白家族。通过充当统一者,SWEET促进糖在细胞膜上的扩散,并在各种生理过程中发挥重要作用,例如非生物胁迫适应。AtSWEET17,一种液泡果糖促进剂,被证明参与干旱期间根系的调节。此外,先前的研究表明,苹果同源物的过表达会导致番茄植株的耐旱性增加。因此,SWEET17可能是参与植物干旱反应的分子元件。然而,SWEET17在干旱胁迫下拟南芥地上组织中的作用和功能仍然难以捉摸。通过将基因表达分析和茎结构与不同地上组织的糖谱相结合,我们发现了SWEET17在碳水化合物供应中的假定作用,因此在茎枝伸长中,特别是在碳限制期间,如在干旱胁迫下发生的。因此,SWEET17似乎参与在干旱胁迫条件下维持植物的有效繁殖。
    Sugars Will Eventually be Exported Transporters (SWEETs) are the most recently discovered family of plant sugar transporters. By acting as uniporters, SWEETs facilitate the diffusion of sugars across cell membranes and play an important role in various physiological processes such as abiotic stress adaptation. AtSWEET17, a vacuolar fructose facilitator, was shown to be involved in the modulation of the root system during drought. In addition, previous studies have shown that overexpression of an apple homolog leads to increased drought tolerance in tomato plants. Therefore, SWEET17 might be a molecular element involved in plant responses to drought. However, the role and function of SWEET17 in above-ground tissues of Arabidopsis under drought stress remain elusive. By combining gene expression analysis and stem architecture with the sugar profiles of different above-ground tissues, we uncovered a putative role for SWEET17 in carbohydrate supply and thus cauline branch elongation, especially during periods of carbon limitation, as occurs under drought stress. Thus, SWEET17 seems to be involved in maintaining efficient plant reproduction under drought stress conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    本综述简要解释了磷在生物活动中的重要性,并指出活生物体中的大部分磷被植物从土壤中吸收。接下来,以前对植物吸收磷酸盐机制的研究综述为H依赖性或Na依赖性共转运系统,并讨论了植物生长的磷酸盐环境。讨论了与磷环境有关的转运蛋白基因的进化及其表达调控机制。
    The present review explains briefly the importance of phosphorus in the biological activities and states that the most phosphorus of living organisms is absorbed by plants from the soil. Next, previous studies on the mechanisms of phosphate uptake by plants are reviewed as H+-dependent or Na+-dependent co-transport systems and the phosphate environment in which plants grow is discussed. The evolution of transporter genes and their regulation mechanisms of expression is discussed in relation to the phosphorus environment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号